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Preface

This book grew out of lecture notes for the courses “Introduction to ∞-categories”
and “∞-categories” that I taught at the University of Regensburg in the winter term
2018/2019 and the summer term 2019, respectively. Most of the material is not
original; on many occasions throughout the first chapters of the book, I follow the
arguments of Rezk [Rez20]. Further sources of inspiration are, of course, Lurie’s
book “Higher Topos Theory”, [Lur09], Cisinski’s book “Higher Categories and
Homotopical Algebra”, [Cis19], Joyal’s paper about quasi-categories, [Joy08], and
Haugseng’s lecture notes on ∞-categories, [Hau17]. Additional survey papers are
Rahn’s (or Groth’s, at the time of writing) “A short course on ∞-categories”, as well
as Gepner’s “An introduction to higher categorical algebra”, both of which appear
as a chapter in [Mil19]. In particular, Gepner’s paper is a very nice read before
attacking Lurie’s seminal work “Higher Algebra”, [Lur17], on the topic.

When reading this book, it is beneficial, but not strictly necessary, to have had
some exposure to ordinary category theory, although not much prior knowledge
is needed and the most important concepts are recalled in the beginning of the
book. For instance, it will be useful to have seen examples of categories, functors,
adjunctions, colimits and limits. Some exposure to algebraic topology in the form of
basic homotopy theory and the relation between topological spaces and simplicial
sets is also helpful. In particular, knowing that many categories which appear in
algebraic topology admit enrichments in topological spaces will help appreciate the
construction of the coherent nerve, which produces from a category enriched in
topological spaces an associated ∞-category and although a reader who is familiar
with model categories will certainly recognise some arguments throughout the first
two chapters of the book, no knowledge of model categories is necessary to follow
the reasoning in this book.

Summing up, the material presented in this book is well suited for anyone with
some background in homotopy theory and category theory and an interest in the
basic theory of ∞-categories. The book can be the basis for a lecture course on the

v
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topic, covering roughly two terms of 4 h of lecture per week; the set of exercises can
be used for parallel exercise sessions. Likewise, the book can be used for reading
courses or, of course, as an individual read.

Copenhagen, Denmark Markus Land
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1Categories, Simplicial Sets,
and Infinity-Categories

Motivation and Overview

In this book, we will discuss some of the foundations of (∞, 1)-categories,
henceforth simply called ∞-categories. Examples of ∞-categories are given by
ordinary categories, and by topologically (or simplicially) enriched categories.
Furthermore, topological spaces give rise to ∞-groupoids. In fact, the associated
∞-groupoid depends only on the (weak) homotopy type of the topological space,
and any ∞-groupoid arises in this fashion—this is the content of the homotopy
hypotheses which we will see in Chap. 2. The collection of all ∞-groupoids itself
is a nice ∞-category which takes in some sense the role of the category of sets in
ordinary category theory.

∞-categories arise naturally at various points in homotopy theory and derived
(algebraic) geometry, and they have some very nice features:

(1) What were previously only constructions like homotopy (co)limits in model
categories become objects with universal properties in ∞-categories.

(2) If we can show that certain objects have universal properties, then we can
construct many interesting maps whose existence cannot be anticipated by
merely considering the construction of the associated objects (or which rely
on having a particular construction at hand), e.g., calculating natural maps from
topological K-theory (viewed as a functor on C∗-algebras) or the Tate diagonal
(which is of utmost importance in the new description of TC).

(3) Therefore, the ∞-categorical machinery often allows for good definitions of
objects: For instance, the algebraic K-theory of a discrete ring can now be
defined just as Quillen and Segal have imagined it. No S−1S, Q, or S•
construction is needed; much rather, it is simply a group completion, just as we

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Land, Introduction to Infinity-Categories, Compact Textbooks in Mathematics,
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2 1 Categories, Simplicial Sets, and Infinity-Categories

know it from K0. This does not mean that these constructions are not useful—it
is good to know that the group completion can be described in these terms.

(4) One very big advantage of ∞-categories is that certain collections of ∞-
categories assemble into a nice new ∞-category, and that one can thus perform
many categorical arguments at that level. Examples include the Goodwillie
tower of a functor, the Goerss–Hopkins–Miller obstruction tower, the universal
property of algebraic K-theory as a noncommutative localizing invariant, its
variant for hermitian K-theory, the smash product of spectra, and many more.

(5) With the help of ∞-categories, it becomes intuitively clear that that the
assignment sending a topological space or a scheme to certain categories (of
sheaves or complexes of sheaves) satisfies descent properties, as, e.g., the
faithfully flat descent theorem of Grothendieck for derived categories. Among
other things, this fact leads to the modern treatment and understanding of
descent theorems for K-theory. Analogously, it allows to define a motivic J-
homomorphism, K(S) → Pic(SH(S)), which is used, e.g., in motivic Atiyah
duality.

(6) There is a nice treatment of generalized Poincaré duality for finite CW-
complexes, based on studying locally constant sheaves of spectra on such
spaces, which is in spirit very similar to what you might know from local
systems on X (in fact, these are simply locally constant sheaves of abelian
groups on X). This leads to very a nice picture of Poincaré duality for closed
manifolds or, more generally, Poincaré duality complexes; and this approach
makes most clear for what kind of cohomology theories there is Poincaré duality
for such spaces, which is very useful, e.g., in surgery theory.

The above list may convince you that the theory of ∞-categories is useful in
practice. However, it also has some drawbacks. In my opinion, the biggest one is the
following (exaggerated on purpose):

! It is practically impossible to construct anything by hand.

The main problem consists of constructing functors between ∞-categories. We
will define ∞-categories as certain kinds of simplicial sets, and a functor will
be a map of simplicial sets. With this definition, a functor cannot be defined by
specifying associations on objects and morphisms, and then checking that units and
composition are respected. We have to provide much more data in the first place,
which can sometimes, but not always be done by hand. Therefore, we always need
some machinery that allows us to construct such functors.

Typical examples of problems which we will face are the following:

(1) Let�1 → J be the inclusion of one morphism in the free standing isomorphism
J . Given a morphism f in an ∞-category, does its classifying map factor
through �1 → J if and only if f is an equivalence?



1.1 Categories and Simplicial Sets 3

(2) Given a natural transformation between functors which is pointwise an equiva-
lence, can we find an inverse of the transformation?Notice that forming inverses
is not unique, so that the usual proof in ordinary categories does not work. Also
note that being a natural transformation means more than a collection of maps
which have a property (that certain squares commute).

(3) Given a collection of composable morphisms x0 → x1 → x2 → . . . in an
∞-category C, can we find a functor N → C refining these data?

(4) Given a fully faithful and essentially surjective functor, can we find an inverse?

Notice that these are all questions whose answer in ordinary category theory is
yes. One would expect them to hold in ∞-categories as well, and it is the objective
of this book to prove precisely such kinds of results. In principle one could say
that any reasonable fact from ordinary category theory should have an analog in
∞-categories, but we have to be very careful with what it means to be a reasonable
fact. Here are some reasonable (depending on your background) statements:

(1) The category of commutative abelian groups/rings is a full subcategory of the
category of groups/rings.

(2) The forgetful functor Cx/ → C preserves connected colimits.

(3) The colimit over a constant functor I → ∗ x→ C is given by x if I is connected.

All these statements are not true in the setting of ∞-categories. This has to do
with the fact that commutativity in ∞-categories is not a property, but a datum.
In particular, maps might or might not preserve such data. The other fact is more
intuitive to understand: The analog will hold true if we replace “connected” by
“contractible”.

Our first goals in this book will be to address some of the above problems. At
the same time, we will get to know a type of argument that is used in the (basics of
the) theory: combinatorial arguments in simplicial sets. In the last part of the book,
we will discuss another very important tool to construct functors: the straightening-
unstraightening equivalence. We will not prove it, but we will discuss some aspects
of it. Afterwards, we will use it to study adjunctions between ∞-categories and
finally prove adjoint functor theorems.

1.1 Categories and Simplicial Sets

The purpose of this section is to get acquainted with the basic objects which we
will be studying throughout the book: simplicial sets. These simplicial sets are
most naturally considered as a category of presheaves on the simplicial indexing
category � which we will define in a moment. We will then study basic notions
in (ordinary) category theory and discuss the relation between simplicial sets and
ordinary categories implemented by the nerve construction, which says that the
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category of categories fully faithfully embeds into simplicial sets, and that one can
explicitly characterize which simplicial sets arise as nerves of categories.

In order to avoid talking about classes, we will work in a set theoretic setting
which we will introduce shortly. In addition to the usual ZFC axioms (Zermelo-
Fraenkel set theory plus the axiom of choice), we will assume another axiom, called
a large cardinal axiom:

Axiom
For every cardinal κ there exists an inaccessible cardinal κ ′ with κ ′ > κ .

A cardinal κ is called inaccessible if the collection of sets V<κ of hereditary
cardinality less than κ (i.e., the set and all its members have cardinality less than κ)
itself satisfies the ZFC axioms. The collection V<κ is called a universe. It turns out
that this large cardinal axiom cannot be proven from ZFC and, in fact, is logically
independent. In particular, an inaccessible cardinal κ is larger than ℵk for any k.
From the axiom, we may fix a sequence

κ0 < κ1 < κ2 < . . .

of inaccessible cardinals and consider their associated universes V<κ .

Definition 1.1.1
A set is called

(1) small, if it is contained in V<κ0 ;
(2) large, if it is contained in V<κ1 ;
(3) very large, if it is contained in Vκ2 ;
(4) very very large, if it is contained in V<κ3 , and so on.

In this book, we will not encounter any sets other than small, large and very large
sets.

ExampleThe set of small sets is large. The set of large sets is very large, and so on.

Definition 1.1.2
A category C consists of a (possibly large) set of objects ob(C), and, for any two objects x

and y, a (also possibly large) set HomC(x, y) of morphisms, equipped with composition
maps

HomC(x, y) × HomC(y, z) → HomC(x, z)

and identities ∗ → HomC(x, x) for all objects x, satisfying associativity and unitality.
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A category is called locally small if all hom-sets HomC(x, y) are small, it is called
small if it is locally small and the set of objects is also small. It is called essentially small
if it is locally small and the set of isomorphism classes of objects is small.

Remark 1.1.3
In category theory, a category would usually be defined as to have a (possibly proper)
class of objects and, for any two objects, a set of morphisms. In our language, this is
what we call a locally small category. In general, however, we will not assume that a
category is locally small.

Definition 1.1.4
A partially ordered set is a set P equipped with a reflexive, antisymmetric and transitive
relation ≤. That is, a ≤ a, if a ≤ b and b ≤ a then a = b, and if a ≤ b and b ≤ c,
then a ≤ c. A map of partially ordered sets is a map of sets f : P → Q such that x ≤ y

implies f (x) ≤ f (y). This defines a category PoSet whose objects are posets and whose
morphisms are maps of posets.

Example Finite linearly ordered sets: The set {0, 1, . . . , n} is linearly ordered, 0 ≤
1 ≤ · · · ≤ n, and written as [n]. A general finite poset S is called linearly ordered
if it is isomorphic to one of the [n]’s. Morphisms of linearly ordered sets are just
morphisms of the underlying poset. We obtain a category LinOrdSet.

Example The subset poset: Let S be a set. Consider its set P(S) of subsets: P(S) =
{I ⊆ S}. This set is partially ordered by inclusion:

I ≤ J ⇔ I ⊆ J

Definition 1.1.5
The category � is the full subcategory of the category PoSet of posets consisting of the
linearly ordered set [n] for all n ≥ 0. Notice that a morphism from [n] to [m] is thus
simply a weakly monotonic map.

ExampleThere are two special maps in �, namely the face and the degeneracymaps.
For every n ≥ 0 and 0 ≤ i ≤ n, the face maps are the maps

di : [n − 1] → [n]
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which are uniquely determined by the property that i /∈ Im(di) and that di is
injective. Furthermore, for n ≥ 1 and 0 ≤ i ≤ n − 1, the degeneracy maps are
the maps

si : [n] → [n − 1]
which are uniquely determined by the property |s−1

i (i)| = 2 and that si is surjective.
In other words, we have si (i) = si (i + 1) = i.

Definition 1.1.6
Let C be a category. We denote the category of functors Cop → Set by P(C) and call it
the category of presheaves on C. An object x ∈ C determines a representable presheaf,
namely the presheaf HomC(−, x) which sends y ∈ C to the set of morphisms from y to
x. This determines a functor C → P(C) which is called the Yoneda embedding.

Definition 1.1.7
A simplicial set is a presheaf on �, i.e., a functor �op → Set. Given a simplicial set X,
its set of n-simplices is given by X([n]) and will be written as Xn. An n-simplex x is
called degenerate if there exists a surjection α : [n] → [m] with m �= n, and an n-simplex
y such that x = α∗(y). Equivalently, x is degenerate if x = s∗

i (y) for some y ∈ Xn−1

and some 0 ≤ i ≤ n − 1. An n-simplex is called non-degenerate if it is not degenerate.
We denote the category P(�) of simplicial sets by sSet.

Definition 1.1.8
We let �n be the simplicial set represented by [n] ∈ �. Concretely, we have (�n)m =
Hom�([m], [n]).

Definition 1.1.9
Let X be a simplicial set. We consider the equivalence relation ∼ on the set of 0-simplices
X0 which is generated by relating x and y if there exists a 1-simplex f ∈ X1 such that
d0(f ) = x and d1(f ) = y. (This relation is reflexive but in general neither transitive nor
symmetric.) Then we define the set π�

0 (X) as follows:

π�
0 (X) = X0/∼

Lemma 1.1.10
The Yoneda lemma: Let F : Cop → Set be a functor and x ∈ C an object. Then the map

HomP(C)(HomC(−, x), F) → F(x)

given by sending η to η(idx) is a bijection.
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Proof The inverse is given by sending an element s ∈ F(x) to the function HomC(y, x) →
F(y) sending f to f ∗(s). It can be explicitly checked that this is a natural transformation
and an inverse of the above-described map. ��

Lemma 1.1.11
The Yoneda embedding C → P(C) is fully faithful.

Proof This follows immediately from the Yoneda Lemma: The effect of the Yoneda
embedding on morphisms is the map

HomC(x, y) → HomP(C)(HomC(−, x),HomC(−, y))

given by sending f to

HomC(z, x)
f∗→ HomC(z, y).

It is readily seen that this map is inverse to the map as described in the Yoneda lemma, which
is given by sending a map f ∈ HomC(x, y) to the function HomC(z, x) → HomC(z, y)

given by sending ϕ to ϕ∗(f ) = f∗ϕ. ��

Corollary 1.1.12
For a simplicial set X, there is a canonical bijection

HomsSet(�
n,X) ∼= Xn.

Definition 1.1.13
A (co)limit of a functor F : I → C is an object of C, abbreviated as colimI F , equipped
with maps F(i) → colimI F , for every i ∈ I , which are compatible in the sense that for
every morphism i → j in I , the diagram

F(i)

F (j)

colimI F

commutes. This datum is required to satisfy the following universal property: Whenever
a given further object X ∈ C is also equipped with maps F(i) → X which are compatible
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in the above-mentioned way, then there exists a unique morphism colimI F → X making
the diagrams

X

colimI F

F(i)

commute.
Dually, a limit of F is an object limI F , equipped with maps limI F → F(i) which

are again compatible, satisfying the dual universal property: Whenever we are given an
object X equipped with compatible morphisms X → F(i) for all i ∈ I , there exists a
unique morphism X → limI F which makes the obvious diagram commute.

Remark 1.1.14
Notice that such a universal property specifies an object up to a unique isomorphism.
Notice also that the universal property refers to more than just the object colimI F . The
reference maps are part of the data, and this is what makes the object unique up to a
unique isomorphism.

ExampleA colimit of the empty diagram ∅ → C is an initial object, i.e., an object
which admits a unique morphism to any other object. Dually, a limit of the empty
diagram ∅ → C is a terminal object, i.e., an object which admits a unique morphism
from any other object.

Example A colimit of a functor defined on the diagram • ← • → • is called a
pushout. Dually, a limit of a functor defined on the diagram • → • ← • is called a
pullback.

ExampleThe quotient vector space V/U is a pushout of the diagram

U V

0 V/U

Observation 1.1.15
One can phrase general (co)limits via initial and terminal objects. This point of view
will be used later when we discuss limits and colimits in ∞-categories. Given a functor

(continued)
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1.1.15 (continued)
F : I → C we can consider the category of (co)cones of this functor. Given a category
I we consider two new categories I� and I�, which are constructed from I by adding
an initial respectively a terminal object. There is an obvious functor I → I� and
I → I�. We can thus consider the functor categories FunF (I�,C) and FunF (I�,C)

of functors which restrict to F along the above-mentioned inclusion. They are called
the categories of cones and cocones over F , respectively. One can then show that a
colimit as described above is an initial object in the category of cones, and that a limit
is a terminal object in the category of cocones.

The following lemma follows immediately from the definition of (co)limits and
the fact established in Exercise 6 that the category Set is bicomplete (otherwise the
statement does not make sense).

Lemma 1.1.16
Let C be a category and let F : I → C be an I -shaped diagram in C. Then, for every
object x ∈ C, there are canonical bijections

(1) HomC(colimI F, x) ∼= limI HomC(F(i), x), and
(2) HomC(x, limI F ) ∼= limI HomC(x, F(i)).

Moreover, these bijections characterize (co)limits uniquely.

Definition 1.1.17
An adjunction consists of a pair of functors (F : C → D,G : D → C) together with a
natural isomorphism between the two functors Cop × D → Set given by

HomD(F(−),−) and HomC(−,G(−)).

Given a functor F : C → D and a diagram X : I → C, there are canonical
comparison maps

colim
I

F (X) −→ F(colim
I

X) respectively F(lim
I

X) −→ lim
I

F (X).

One says that F preserves colimits respectively limits, if the corresponding compar-
ison map is an isomorphism.

Lemma 1.1.18
Left adjoints preserve colimits, and right adjoints preserve limits.
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Proof Let F : C → D be a functor which admits a right adjoint, say G. Let X : I → C be a
diagram which has a colimit colimI X ∈ C. We claim that F sends that colimit to a colimit of
the diagram I → C → D. In formulas, we claim that the canonical map colimI F (X(i)) →
F(colimI X(i)) induced from the compatible maps F(X(i)) → F(colimI X(i)), which are
part of the datum of the colimit (and then applying F ), is an isomorphism. In order to see
this, it suffices to show that this canonical map induces a bijection on hom-sets for all other
objects y ∈ D:

HomD(F(colim
I

X(i)), y) ∼= HomC(colim
I

X(i),Gy)

∼= lim
I

HomC(X(i),Gy)

∼= lim
I

HomD(F(X(i)), y)

∼= HomD(colim
I

F (X(i)), y)

By the Yoneda lemma, this completes the proof. The argument for the claim that right adjoints
preserve limits is similar. ��

Lemma 1.1.19
Let F : C → D be a functor which admits right adjoints G and G′. Then there is a
specified natural isomorphism between G and G′ which is uniquely characterised by
being compatible with the adjunctions. Hence, adjoints, if they exist, are unique up to
a unique isomorphism.

Proof Consider the following two natural bijections:

HomC(Gx,G′x) ∼= HomD(FGx, x) ∼= HomC(Gx,Gx)

Then the identity of Gx corresponds to a natural transformation G → G′. Applying the same
trick to HomC(G′x,Gx) shows that this must be a natural isomorphism. ��

Definition 1.1.20
A category is called (co)complete, if it admits (co)limits indexed over arbitrary small
categories (statt (co)limits). It is called bicomplete if it is both complete and cocomplete.

Lemma 1.1.21
If C is bicomplete, then the (co)limit is left/right adjoint to the constant diagram functor.
In particular, forming (co)limits determines a functor

Fun(I,C) → C.
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Proof Let us spell out the colimit case. Consider the constant functor const : C → Fun(I,C).
Now we specify for each functor F : I → C an object, namely colimI F . Part of the datum
of a colimit are compatible maps {F(i) → colimI F }{i∈I } which are easily seen to assemble
into a natural transformation

F → const(colim
I

F ).

Next, we consider the composite

HomC(colim
I

F,X) → HomFun(I,C)(const(colim
I

F ), constX) → HomFun(I,C)(F, constX)

which is a bijection by the universal property of a colimit. The proof of the lemma thus
follows from Exercise 10. The case of limits is completely analogous. ��

Lemma 1.1.22
Given an adjunction with F : C → D being left-adjoint to G : D → C, and given a
further auxiliary small category I , then the functors

again form an adjoint pair. Here, F∗ is given by post-composition with F , and likewise
G∗ is given by post-composition with G.

ProofThe adjunction is determined by a counit map ε : FG → idD and a unit map η : idC →
GF that satisfy the triangle identities of Exercise 9. We now use these maps to construct
counit maps and unit maps for the pair of functors (F∗,G∗) as follows: Let ϕ ∈ Fun(I,D).
We need to specify a natural map ε∗ : F∗(G∗(ϕ)) → ϕ of functors I → D, so let x ∈ E. We
define the new counit ε∗ to be the map

F(G(ϕ(x)))
εϕ(x)−→ ϕ(x).

It is easy to see that this is natural in ϕ, since ε itself is a natural transformation. Similarly,
we define a natural transformation η∗ : ψ → G∗F∗(ψ) given by

ψ(y)
ηψ(y)−→ G(F(ψ(y))).

Then, it is easy to see that the triangle identities are satisfied, because (ε, η) satisfy the
triangle identities. ��
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Proposition 1.1.23
If C is a bicomplete category, then Fun(I,C) is bicomplete as well. A (co)limit of the
diagram X : J → Fun(I,C) is given by the functor sending i ∈ I to colimJ X(j)(i).

Proof Let us prove that Fun(I,C) is cocomplete. The completeness argument is similar (or
can be formally deduced from this case by applying the functor (−)op correctly). We claim
that the composite

is a colimit functor whose existence we wish to show. By Lemma 1.1.22 this functor has a
right adjoint given by

const∗ : Fun(I,C) → Fun(I,Fun(J,C)) ∼= Fun(J,Fun(I,C)).

The proposition is proven once we have convinced ourselves that this is itself the constant
functor (which follows immediately from the definition), since we can then allude to
Lemma 1.1.21. ��

Corollary 1.1.24
The category of simplicial sets sSet is bicomplete.

Definition 1.1.25
Let D be a category and x an object of D. The slice category D/x has objects pairs (d ∈
D, αd → x), and morphisms from (d, α) to (d ′, α′) consist of those maps β : d → d ′ in
D such that the obvious triangle involving α, α′, and β commutes. There is a canonical
functor D/x → D which sends a pair (d, α) to d.

If F : C → D is a functor and let x ∈ D be an object. We define the slice category
associated to F and x by the pullback

Thus, F/x has as objects pairs (c ∈ C, α : F(c) → x) and morphisms consist of those
maps β : c → c′ such that the obvious triangle involving α, α′, and F(β) commutes.
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Sometimes, in particular when F is the inclusion of a subcategory, we simply
write C/x instead of F/x , leaving the functor F understood. There is also an obvious
dual notion of slice categories built from Dx/ whose objects are pairs (d, α : x →
d). In the following, we use the slice category associated to the Yoneda embedding
C → P(C) of Definition 1.1.6.

Lemma 1.1.26
Every presheaf is a colimit of representables. More precisely, for every presheaf
F : Cop → Set, the tautological map

colim
X∈C/F

HomC(−,X) → F

is an isomorphism.

Proof The proof relies once again on the Yoneda lemma, i.e., we show that this map induces
a bijection on maps to an auxiliary presheaf G. For this purpose, we calculate

HomP(C)(colim
X∈C/F

HomC(−,X),G) ∼= lim
X∈C/F

HomP(C)(HomC(−,X),G)

∼= lim
X∈C/F

G(X).

It is not hard to see that the latter is in fact the set of natural transformations from F to G. ��

Let i : C0 ⊆ C be a small subcategory of a category, and let D be a bicomplete
category.

Fact 1.1.27 The restriction functor

i∗ : Fun(C,D) → Fun(C0,D)

has a left adjoint denoted by i! and a right adjoint denoted by i∗. They are given as

i!(F)(x) = colim
c∈(C0)/x

F (c)

and

i∗(F)(y) = lim
c∈(C0)x/

F (x).
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Notice that the slices are small by assumption, so that the colimits and limits exist. It is a nice
exercise to convince yourself that this formula produces adjoints for the restriction functor
i∗.

Definition 1.1.28
In the above situation, we call i!(F) the left Kan extension of F along i and i∗(F) the
right Kan extension of F along i.

Observation 1.1.29
The statement that the tautological map is an isomorphism shows that the identity of
P(C) is a left Kan extension of the Yoneda embedding (along the Yoneda embedding).

Corollary 1.1.30
IfD is a cocomplete category and C is a small category, then the canonical functor

Funcolim(P(C),D) → Fun(C,D)

obtained by restriction along the Yoneda embedding is an equivalence. Here, Funcolim

denotes the full subcategory of the functor category on those functors which preserve
colimits.

Proof Given a functor f : C → D, we want to construct a colimit-preserving functor
f̂ : P(C) → D, such that f̂ (X) = f (X) for X ∈ C. By Lemma 1.1.26, given an object
F ∈ P(C), we are forced to define

f̂ (F ) = colim
X∈C/F

f (X).

It is easy to check that this is in fact a functor: For F → G a morphism in P(C), there is an
induced functor from the category C/F to the category C/G given by post-composition with
the given morphism. Then it is not hard to see that taking the colimit produces a map

colim
X∈C/F

f (X) → colim
X∈C/G

f (X).

Also, it can be readily seen that this is in fact a functor.
In order to see that this functor preserves colimits, we observe that f̂ admits a right adjoint

G given by

G(d)(X) = HomD(f (X), d).
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In the proof of Lemma 1.1.26, we saw that the set of natural transformations between F and
F ′ is given by

HomP(C)(F, F ′) = lim
X∈C/F

F ′(X).

Therefore, we see that

HomD(f̂ (F), d) ∼= lim
X∈C/F

HomD(f (X), d) ∼= lim
X∈C/F

G(d)(X).

Hence f̂ is left-adjoint to G and thus preserves colimits. ��

Corollary 1.1.31
Let X be a simplicial set. Then

X ∼= colim[n]∈�/X

�n.

Lemma 1.1.32
Let X be a fixed simplicial set. Then the functor sSet → sSet sending Y to X × Y

admits a right adjoint Hom(X,−) determined by the formula

HomsSet(�
n,Hom(X,Z)) = HomsSet(�

n × X,Z).

Sometimes we will also write ZX for Hom(X,Z).

ProofMapping [n] to the set on the right-hand side clearly determines a simplicial set which
we call Hom(X,Z). Since it satisfies the adjunction property on representable simplicial sets,
we can extend the adjunction to all simplicial sets. (Keep in mind that every simplicial set is
a colimit of representables.) Notice that we use the fact that the functor X ×−: sSet → sSet
preserves colimits. This is certainly true in Set because the Hom-set provides a right adjoint.
��

Definition 1.1.33
We let Top be the category whose objects are topological spaces and whose morphisms
are continuous maps. The following are important objects for us: Let n ≥ 0 be a natural
number. The topological n-simplex �n

top is the subspace of Rn+1
≥0 consisting of those

points whose coordinates add up to 1. The topological simplices form a cosimplicial
space [n] �→ �n

top, where the induced maps are the unique affine linear maps that do
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what they should on vertices. More precisely, given α : [n] → [m], the induced map
α∗ : �n

top → �m
top is given by

α∗(t0, . . . , tn) = (v0, . . . , vm),

where vi = ∑

j �→i

tj .

Definition 1.1.34
The singular simplicial set of a topological space X is the simplicial set

S(X) = ([n] �→ HomTop(�
n
top,X)

)
.

Definition 1.1.35
The geometric realization | − |: sSet → Top is the unique colimit-preserving functor
which sends �n to �n

top. Concretely, the geometric realization of a simplicial set X is the
topological space

|X| = colim
�n∈�/X

�n
top.

An even more concrete formula is given by

|X| =
( ∐

n∈�

Xn × �n
top

)
/((f ∗(x), t) ∼ (x, f∗(t))

for x ∈ Xn, t ∈ �m
top and f : [m] → [n] a morphism in �.

Proposition 1.1.36
The singular complex is right-adjoint to geometric realization.

Proof By definition of adjunctions, we need to specify a natural isomorphism of functors
sSetop × Top → Set between

HomTop(|X|, Y ) ∼= HomsSet(X,S(Y )).

But by the previous work, we know that these functors are equivalent to

lim
�/X

HomTop(�
n
top, Y ) and lim

�/X

HomsSet(�
n,S(Y )),

and the latter two are already isomorphic (by definition of S(Y )) before forming the limit. ��
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Definition 1.1.37

(1) The boundary ∂�n is the subsimplicial set of �n whose k-simplices consist of the
non-surjective maps [k] → [n].

(2) For any subset S ⊆ [n], the S-horn �n
S ⊆ �n consists of those k-simplices f : [k] →

[n] where there exists an i ∈ [n] \ S such that i is not in the image of f . A horn
�n

j = �n
{j } is called inner horn if 0 < j < n and it is called (left or right) outer horn

if j = 0 or j = n, respectively.
(3) The spine In ⊆ �n is given by those k-simplices f : [k] → [n] whose image is

either of the form {j} or of the form {j, j + 1}.

Definition 1.1.38
The n-skeleton skn(X) of a simplicial set X is given by the simplicial set i!i∗(X), where
i : �≤n ⊆ � is the inclusion of the full subcategory on objects of cardinality ≤ n +
1. Dually, the n-coskeleton coskn(X) of a simplicial set is given by the simplicial set
i∗i∗(X). This implies that the k-simplices of coskn(X) are given by

coskn(X)k = HomsSet(skn(�k),X).

Lemma 1.1.39

(1) The skeleton skn(X) is isomorphic to the smallest sub-simplicial set of X whose set
of k-simplices coincides with the ones of X for k ≤ n.

(2) The functors skn and coskn are left- and right-adjoint to each other.
(3) There is the formula coskn(X) = HomsSet(skn(�

•),X).

Proof

(1) It is easy to see that the map skn(X) → X is levelwise injective, and that skn(X)k = Xk

for k ≤ n. Given any other sub-simplicial set Z with this property, we have skn(X) =
skn(Z) ⊆ Z, which yields the claim.

(2) Obvious, since adjoints compose.
(3) Obvious, by (2).

��

Lemma 1.1.40
The geometric realization of the horn is a horn, and the geometric realization of the
spine is a spine.
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Proof This follows from the fact that |�n| = �n
top and the following observations:

(1) In = In−1 ��0 �1;
(2) there is a coequalizer

0 i j n

[n]\i × n
[n]\j

0 i n,i k

[n]\i n
i .

��

Corollary 1.1.41
The geometric realization of a simplicial set is a CW-complex.

Proof Given a simplicial set X, define a filtration on |X| through |skn(X)| ⊆ |X|. Since
geometric realization commutes with colimits, we see that this is in fact a filtration of |X|
and the pushouts from above provide pushouts of geometric realizations. Next, we use that
|∂�n| ∼= Sn−1 and |�n| ∼= Dn. ��

Observation 1.1.42
A poset determines a category in the following way: Objects are the elements of the
posets P , and for each pair of elements x, y ∈ P , we have

Hom(x, y) =
⎧
⎨

⎩

∗ if x ≤ y

∅ else.

Furthermore, a functor between categories associated to posets is the same thing as a
map of posets, i.e., a map of sets respecting the partial ordering. This determines a fully
faithful functor PoSet → Cat. It follows that we can view [n] as a category. Sending
[n] to this category yields a cosimplicial small category.

Definition 1.1.43
The nerve of a category C is the simplicial set given by

[n] �→ Fun([n],C),

i.e., it is given by taking functors out of the previous cosimplicial category to the given
category.
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Lemma 1.1.44
�n is isomorphic to the nerve of the category [n].

ProofUnravelling the definitions, we find that

(�n)m = Hom�([m], [n]),

whereas

N([n])m = Fun([m], [n]).

Therefore, it suffices to recall that the functor Posets → Cat is fully faithful. ��

Definition 1.1.45
The classifying space BG of a group G is the geometric realization of the nerve of the
group considered as groupoid with one object.

Definition 1.1.46
A Kan complex is a simplicial set X which has the extension property for horn inclusions
�n

j → �n for 0 ≤ j ≤ n, i.e., where any lifting problem

n
j X

n

admits a solution.

Lemma 1.1.47
The singular complex of a topological space is a Kan complex.

Proof By adjunction, there is an equivalence of the following two lifting problems:

n
j S(X) | n

j | X

n n

Next, we recall that the topological horn inclusion has a retract, so that the right lifting
problem can be solved. ��
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Fact 1.1.48 A Kan complex satisfies the extension property for any monomorphism of
simplicial sets K → L which induces a weak equivalence on geometric realizations (these
are called anodyne maps), see for instance [GJ09, Theorem 11.3].

Lemma 1.1.49
If the nerve of a category is a Kan complex, then the category is a groupoid.

Proof Since we can lift outer 2-horns, one can easily show that every morphism in C has a
right and a left inverse and is therefore invertible itself. ��

Definition 1.1.50
Let f, g : X → Y be two maps of simplicial sets. We say that f and g are homotopic
if there exists H : X × �1 → Y such that H restricts to f and g. Given a pointed Kan
complex (X, x) we define its simplicial homotopy groups as follows:

π�
n (X, x) = [(�n, ∂�n), (X, x)]∗

Fact 1.1.51 The homotopy relation is in fact an equivalence relation if Y is a Kan complex.
The simplicial homotopy groups of a Kan complex agree with the ordinary homotopy groups
of the geometric realization. In particular, they are groups for n ≥ 1 and abelian groups for
n ≥ 2. For more details about simplicial homotopies and simplicial homotopy groups, see
the book of Goerss and Jardine, [GJ09, I.6 and I.7].

Theorem 1.1.52
For a simplicial set X, the following three conditions are equivalent:

(1) X has unique extensions for �n
j → �n if 0 < j < n.

(2) X has unique extensions for In → �n for n ≥ 2.
(3) X is isomorphic to the nerve of a category.

ProofWe will show that (1) ⇔ (2) ⇔ (3).
In order to show (3) ⇒ (2), we consider a category C and its nerve N(C). Recall that its

n-simplices are given by Fun([n],C), and thus by chains of composable morphisms. Face and
degeneracies are given by composition and inserting identities. In particular, the restriction
along the spine inclusion In picks out precisely the morphisms, so that restriction along the
spine induces an bijection between Fun([n],C) and HomsSet(I

n,N(C)).
In order to show (2) ⇒ (3), consider a simplicial set X which has unique liftings against

spines. We define a category C as follows: The objects are given by X0, the 0-simplices of
X; the morphisms from x to y are given by all 1-simplices f ∈ X1 such that d1(f ) = x
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and d0(f ) = y; and identities are given by s0(x). Also, we need to explain how to compose
morphisms: Two composable morphisms determine a map I 2 = �2

1 → X which we can
extend over �2 and restrict to the new edge. We claim that this is indeed a category, for which
we have to check that identities really are identities and that composition is associative (both
follow from uniqueness):

(a) s0(f ) : �2 → X has d0s0(f ) = f = d1s0(f ) and d2s0(f ) = s0d1(f ) = s0(x).
Similarly, s1(f ) : �2 → X is a 2-simplex, witnessing that idy ◦ f = f .

(b) Let f, g, h be composable 1-simplices. Consider the associated map I 3 → X. It can be
uniquely extended to a map 
 : �3 → X. The restriction of this map to �{0,2} is gf .
Therefore, the 2-simplex d2(
) is a composition of gf and h, i.e., 
|�{0,3} = h ◦ gf .
On the other hand, the 2-simplex d0(
) yields hg, and thus the 2-simplex d1(
) yields
hg ◦ f . Hence

h ◦ gf = 
�{0,3} = hg ◦ f,

which shows the associativity of composition.

We claim that there is a preferred mapX → N(C) given by the following construction: Amap
�n → X can be restricted along the spine and thus determines a sequence of composable
morphisms of C, so that we obtain a map In → N(C). This map can be (uniquely) extended
over �n and thus provides an association which maps n-simplices of X to n-simplices of
N(C). Using the fact that an n-simplex of X is determined by its restriction to the spine, it is
now easily seen that the map X → N(C) satisfies the following two criteria:

(a) It is an isomorphism on 0- and 1-simplices.
(b) There is a commutative diagram

where the vertical maps are bijections and where the lower fibre product is over the
source and target maps and has n-many factors on both sides.

By (a) the lower map is a bijection, so the upper horizontal map is a bijection as well. This
shows that the map X → N(C) is an isomorphism of simplicial sets, which shows (2) ⇒ (3).

Next, we prove (1) ⇒ (2) via induction over n. For n = 2, this is clear, since the 2-spine
is the inner 2-horn. Therefore, we may assume that one can uniquely lift maps I k → X to�k

for all k strictly smaller than n and consider a map In → X for which we wish to show that
it extends uniquely to �n. We will show that it extends uniquely to �n

j for some 0 ≤ j ≤ n,

and then use (1) to deduce the claim. We first observe that In∩�n\{n} is the spine In−1 of this
simplex, and likewise that In ∩�n\{0} is the spine as well. Thus, by the inductive hypothesis,
there are unique maps �n\{ε} → X extending the map from the spine toX for ε = 0, n. Since
the intersection of these two faces is given by �n\{0,n}, which intersects the spine again in
a smaller spine, these two extensions agree on this intersection, by the inductive hypothesis.
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Hence, we obtain a map

In ∪ �n\{0} ∪ �n\{n} = �n\{0} ∪ �n\{n} → X

where the union is in �n. We claim that there exists a unique extension to the union

�n\{0} ∪ �n\{n} ∪ �n\{1}.

For this, we claim that �n\{0}∪�n\{n} contains the spine of �n\{1}: The edges from i → i+1
for 2 ≤ i ≤ n − 1 all lie in �n\{0}, and the edge from 0 → 2 lies in �n\{n} because of n ≥ 3.
Hence, there is a unique map from �n\{1} → X extending this map on the spine. It remains
to be shown that this map agrees with the given one on

(
�n\{0} ∪ �n\{n}) ∩ �n\{1} = �n\{0,1} ∪ �n\{1,n}.

On both of these simplices, the map is determined by its restriction to the spine, which shows
the claim. Inductively, we find that there exists a unique extension of the map in question to
a map �n

n−1 → X. This map can now be uniquely extended to �n by assumption (1).
In order to see that (2) ⇒ (1), we consider an extension problem β : �n

i → X for
which we want to show that it extends uniquely to �n. Clearly we may assume that n ≥ 3,
because I 2 = �2

1. By assumption (2) and Exercise 13, there is an inclusion In → �n
i and

we can consider the restricted extension problem. This problem can be solved uniquely by
assumption (2), so that we obtain a map α : �n → X. This map can in turn be restricted to
�n

i , and we want to show that this map is given by β. In order to do so, we may restrict the
map to the faces of �n

i , i.e., to the union of �n\{j } for j �= i. It is easy to see that

α|�n\{0} = β|�n\{0},

because the spine of that simplex is given by a subset of the big spine, and by its very
definition α|I n = β|I n . The same holds for

α|�n\{n} = β|�n\{n},

provided that β is defined there. We need to show that

α|�n\{j} = β|�n\{j}

under the assumption that j �= 0, n. For this, we show that α|�{j−1,j+1} = β|�{j−1,j+1} (again,
all the other edges of the spine are already contained in the big spine). Since n ≥ 3, this edge
is contained in �n\{ε} for ε either 0 or 1. Then we can induct that this determines the map
from �n

i , which completes the proof. ��
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In fact, one can say slightly more:

Lemma 1.1.53
If n ≥ 4 and 0 ≤ j ≤ n and C is a category, then every lifting problem

can be uniquely solved.

Proof It is the content of Exercise 19 to show that nerves of categories are 2-coskeletal, and
we give another argument in Corollary 1.2.21. Hence, it suffices to recall that sk2(�n

j ) →
sk2(�2) is an isomorphism for n ≥ 4 and all 0 ≤ j ≤ n. ��

Lemma 1.1.54
The nerve of a category C is a Kan complex if and only if C is a groupoid.

Proof In Lemma 1.1.49, we have seen already the direction that N(C) being a Kan complex
implies that C is a groupoid. Now, we need to show the other direction. Let us thus assume
that C is a groupoid, and let us show that N(C) is a Kan complex. By Theorem 1.1.52 we
already know that we can (uniquely) lift all inner horns and all horns of dimension greater or
equal to 4. Therefore, we only need to prove that we can lift outer 2-horns and outer 3-horns.
By passing to opposite categories, it suffices to show that every extension problem

has a (unique) solution for n = 2, 3. For n = 2, such a map is given by two maps f : x → y

and g : x → z. We can then choose f ◦g−1 for the other edge. In order to show the claim for
the left outer 3-horn, we consider the restriction along the spine and obtain three composable
maps f , g, and h. We find an extension to �3 precisely if the edge �{1,3} → �3

0 → C is
given by the composite hg. Considering the 2-simplex �{0,1,3} → �3

0 → C, we find that
this edge satisfies the condition that precomposition with f is given by hgf . Since f is an
isomorphism, the claim follows. ��
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1.2 ∞-Categories

In this section, we will work towards the definition of ∞-categories, taking Theo-
rem 1.1.52 as a motivation. This naturally leads to two (a priori and a posteriori)
different definitions that one could come up with, the more naive one being called
a composer in this book. We will work out why the notion of an ∞-category as
defined by Joyal behaves better than the notion of a composer and how this makes it
the “correct” generalization of ordinary categories. Also, we will discuss examples
of ∞-categories and some basic operations which may be performed on them. One
“import tool” to construct ∞-categories are simplicially enriched categories, so we
will take a little detour and discuss enriched categories to the extent necessary for
our purposes.

Definition 1.2.1
A composer is a simplicial set which has the extension property for spine inclusions
In → �n.

Definition 1.2.2
In a composer (in fact, in a general simplicial set) we call 0-simplices objects, and a 1-
simplex f is called a morphism from d1(f ) (the source) to d0(f ) (the target). We define
the identity morphism of an object x to be s0(x). For composers, we define a composition
of n-composable morphisms to be a choice of an extension to �n, sometimes also just the
restriction to the edge �{0,n} ⊆ �n.

From this definition, it becomes clear that the name “composer” originates from
the fact that one can compose morphisms. In order to avoid associativity questions,
a composer is equipped with an n-ary composition law.

Example The singular set of a topological space is a composer: Objects are the
points, morphisms from x to y are paths. A composition of morphisms is any path
which is homotopic relative endpoints to the concatenation of the paths.

Definition 1.2.3
Let X be a simplicial set. We call two 1-simplices f and g from x to y equivalent if there
exists a 2-simplex σ : �2 → X which satisfies the following conditions:

(1) σ|�{0,1} = f

(2) σ|�{0,2} = g

(3) σ|�{1,2} = idy
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Observation 1.2.4
This relation is obviously reflexive, but again a priori neither transitive nor symmetric.
Can you find a further lifting criterion for a composer so that the relation becomes in
fact an equivalence relation?

Definition 1.2.5
Let X be a simplicial set. We define a category hX by means of generators and relations:
The objects are given by X0; morphisms are generated by X1, i.e., for every 1-simplex
f : �1 → X there is a morphism from d1(f ) to d0(f ); the free composites will be
denoted by f � g. Now we start to impose relations:

(1) The 1-simplex s0(x) is the identity of x.
(2) For every 2-simplex σ : �2 → X with boundary given by a triple (f, g, h), we

impose the relation that h = g � f .
(3) If f ∼ f ′, then f � g ∼ f ′ � g and g′ � f ∼ g′ � f ′.

The category hX is called the homotopy category of X.

Remark 1.2.6
This construction is obviously functorial, i.e., we have a functor h : sSet → Cat.

Lemma 1.2.7
Let f : X → Y be a map of simplicial sets which induces an isomorphism sk2(X) →
sk2(Y ). Then the induced map hX → hY is an isomorphism of categories.

Proof The whole construction only refers to the 2-skeleton of X. In other words, the evident
map h(sk2(X)) → hX induced by functoriality of h is an isomorphism. Apart from that, we
need to use the fact that the following diagram commutes:

h(sk2X) h(sk2Y )

hX hY

∼=

∼= ∼=

��
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Observation 1.2.8
In general, the morphisms in hX are formal composites of 1-simplices (with correct
source and target). If X is a composer, then we see that the set of morphisms of hX

is a quotient of the set of 1-simplices, and that any two composites of the same two
morphisms will be identified. In particular, equivalent morphisms are identified: If we
have a 2-simplex

y

x y

idy

g

f

then we find that g ∼ idy � f ∼ f .

Lemma 1.2.9
Suppose that a composer X has in addition the lifting property with respect to inner
3-horn inclusions. Let f and g be composable 1-simplices in X. Then

(1) there exists a composite of f and g;
(2) the relation “equivalence” of morphisms in the sense of Definition 1.2.3 is an

equivalence relation;
(3) any two composites of f and g are equivalent in the sense of Definition 1.2.3; and
(4) given a 2-simplex σ with σ�{0,1} = idx , σ�{1,2} = h and σ�{0,2} = h′, then h′ ∼ h.

Proof (1) follows from the definition of a composer. For (2), we need to prove symmetry and
transitivity. Let us first prove symmetry. For this purpose, let f, g : x → y be morphisms
with f ∼ g. Pick a 2-simplex σ with σ�{0,1} = f , σ�{0,2} = g, and σ�{1,2} = idy . Together
with s1(f ) and s0(idy), this determines a map �3

1 → X:

y

y

x y

idy

idy

g

f

f

idy

Since X has the extension property for inner 3-horns, there exists an extension to �3, which
can be restricted to the face �{0,2,3} . This 2-simplex witnesses that g ∼ f .
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In order to show transitivity, suppose that f ∼ g ∼ h. Pick 2-simplices σ and σ ′
witnessing these relations. Together with s0(idy), these define a map �3

2 → X:

y

y

x y

idy

idy

g

f

h

idy

Extending to �3 and then restricting to �{0,1,3} shows that f ∼ h. In order to prove (3),
let f : x → y and g : y → z be composable morphisms. Choosing compositions h and h′,
together with s1(g), determines a map �3

1 → X:

z

y

x z

g

g

h

f

h

idy

Extending to �3 and then restricting to �{0,1,3} shows that h ∼ h′. In order to prove (4), we
consider the map �3

2 → X given by the diagram

y

x

x y

h

h

h

idx

h

idy

and extend to �3. Restricting the result to �{0,2,3} shows that h′ ∼ h. ��

Lemma 1.2.10
Suppose that X is a composer with the inner 3-horn extension property. Then there
is a category π(X) with objects given by 0-simplices of X and morphisms given by

(continued)
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Lemma 1.2.10 (continued)
equivalence classes (in the sense of Definition 1.2.3) of 1-simplices in X. Composition
is defined via lifting along I 2 → �2. The uniqueness of composition (up to
equivalence) shows that composition in π(X) is associative.

Proof It only remains to prove that composition is associative. For this, it suffices to show that
if f, g, h are composable morphisms, then h ◦ (gf ) is a composition of hg and f . Consider
the map �3

1 → X given by

z

y

x z

g

hg

gf

f

(hg)f

h

Extending to �3 and then restricting to �{0,2,3} shows that (hg)f is a composition of gf and
h. Since composition in X is unique up to equivalence, the associativity of composition in
π(X) follows. ��

Corollary 1.2.11
LetX be a composer which has the inner 3-horn lifting property. Then hX is isomorphic
to π(X). In particular, for composers with the additional inner 3-horn lifting condition,
there is a very explicit description of the homotopy category of X.

Proof There is a canonical functor hX → π(X) which is constructed as follows: It is the
identity on objects and induced by the identity on 1-simplices. Since all relations imposed in
hX are fulfilled in π(X), this in fact leads to a functor as needed. It suffices to prove that for
any two objects x, y ∈ X, the canonical map

HomhX(x, y) → Homπ(X)(x, y)

is a bijection. In order to show this, we observe that there is a commutative diagram

X1(x, y)

HomhX(x, y) Homπ(X)(x, y)
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where X1(x, y) denotes the set of 1-simplices f with d1(f ) = x and d0(f ) = y. Thanks to
the definition of π and Observation 1.2.8, both maps from X1(x, y) are surjective. Therefore,
the horizontal map is surjective. It remains to show that this map is injective as well. For this
purpose, assume that you are given two morphisms f, g ∈ X1(x, y) with the same image
in π(X). This means that they are equivalent in the sense of Definition 1.2.3. But again by
Observation 1.2.8, this means that f ∼ g. ��

Remark 1.2.12
In the above corollary, X needed not really be a composer, but only a composition
of 2 composable morphisms. In the sequel, we will call a simplicial set which has the
extension property for the 2-spine (which is the inner 2-horn) aweak composer. In order
to compose many morphisms at the same time, we compose inductively and obtain a
well-defined “n-fold composition” up to equivalence (provided that the weak composer
satisfies the extension property for inner 3-horns as well).

Now notice that I 2 = �2
1. Therefore, we can reformulate the above statement as

follows:

Corollary 1.2.13
Let X be a simplicial set which admits liftings for inner 2- and 3-horns. Then hX is
isomorphic to π(X).

Corollary 1.2.14
Let C be a category. Then h(N(C)) is canonically isomorphic to C.

Proof We have seen that N(C) admits (unique) lifts for many horns, including the ones
described in the previous corollary. Hence, it suffices to prove that π(N(C)) ∼= C. But we
recall that the relation of “equivalence” for morphisms in N(C) is the relation of “being
equal”. ��

Definition 1.2.15
A simplicial set is called an ∞-category if it has the extension property for all inner horn
inclusions �n

j → �n, n ≥ 2, 0 < j < n.

Definition 1.2.16
A functor between two ∞-categories is just a map of simplicial sets. In other words,
the category of ∞-categories is the full subcategory of sSet on objects which are ∞-
categories.
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At a later stage of this book, we will see that, informally, an ∞-category is a
composer in which the choice of a composition is unique up to a contractible space
of choices: For each pair of composable morphisms in a composer X, there is a
simplicial set of compositions of f and g, CompX(f, g), given by the pullback

According to Exercise 32, the inner 3-horn lifting condition tells us that
CompX(f, g) is connected, i.e., its π�

0 (−) vanishes. If we now demand that X

has indeed the extension property for inner horn inclusions for all �n
j → �n, then

we obtain the following two facts (which we will prove later):

(1) The simplicial set CompX(f, g) is a Kan complex.
(2) All simplicial homotopy groups π�

n (CompX(f, g)) vanish.

Therefore, an ∞-category is a composer in which composition is well-defined
up to a contractible space of choices.

Example A Kan complex, and thus the singular set S(X) of a space X, is an ∞-
category. Also, the nerve of any category is an ∞-category.

In order to compare ∞-categories with composers, we state the following
proposition. The proof will be given later, see Propositions 1.3.22 and 1.3.12.

Proposition 1.2.17
Every ∞-category is a composer. However, there are composers which are not ∞-
categories.

Proposition 1.2.18
The pair of functors

are adjoint, N being the right adjoint to h.

ProofWe need to specify unit and counit transformations. The counit is the isomorphism

h(N(C)) ∼= C
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of Corollary 1.2.14. In order to construct a natural map X → N(hX), i.e., the unit of the
adjunction, we find that there are canonical maps on 0- and 1-simplices: Recall that the
objects of hX are the 0-simplices of X and that there is a canonical map from X1 to the
morphisms of hX (this map is a surjection if X is a composer). For the construction of
the map on general n-simplices, we observe that an n-simplex �n → N(hX) is uniquely
determined by its restriction to the spine, i.e., consider the diagram

But then, simply use the bijection

HomsSet(I
n,X) � X1 ×X0 · · · ×X0 X1

and the corresponding bijection for N(hX) and the previous observation to obtain a map for
general n-simplices. It is easily checked that these are in fact unit and counit of an adjunction.

Alternatively, you can also show that the map induced by h and the above counit,

HomsSet(X,N(C)) → Fun(hX,C),

is a bijection. This follows immediately from the definitions. ��

Lemma 1.2.19
Let (F,G, ε, η) be an adjunction with F : C → D the left adjoint, G the right adjoint,
ε : FG → id the counit and η : id → GF the unit. Then

(1) G is fully faithful if and only if ε is an isomorphism, and
(2) F is fully faithful if and only if η is an isomorphism.

Proof Consider the diagram

Hom(X, Y ) Hom(GX,GY) Hom(FGX,FGY)

Hom(FGX, Y )

G

ε∗
X

F

τ∼= (εY )∗

The fact that the right triangle commutes is part of the solution of Exercise 9. (In fact, this
is how adjunctions with a binatural isomorphism τ are translated into adjunctions using unit
and counit.) We now claim that the big diagram also commutes. Spelling this out, we need to
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check that for every morphism f : X → Y , the diagram

FGX FGY

X Y

FG(f )

εX εY

f

commutes. This is true, since ε : FG → id is a natural transformation of functors. Hence,
we see that G is fully faithful if and only if for all X,Y ∈ D, the map ε∗

X is an isomorphism.
By the Yoneda lemma, this is the case if and only if εX itself is an isomorphism for all X,
which shows claim (1). The argument for (2) is similar. ��

Corollary 1.2.20
The nerve functor is fully faithful. Its essential image is described by Proposition 1.1.52.

ProofWe proved in Proposition 1.2.18 that N is a right adjoint to h by constructing explicit
unit and counit maps. Thus, by Lemma 1.2.19 it suffices to check that the counit of this
adjunction is an isomorphism. But by construction, the counit is given by the canonical
isomorphism h(N(C)) → C. ��

Let us also record the following consequence, which Exercise 19 asks to prove
from the definitions.

Corollary 1.2.21
The nerve of a category is 2-coskeletal.

Proof There is a commutative diagram

Fun(hX, ) HomsSet(X,N( ))

Fun(h(sk2X), ) HomsSet(sk2X,N( )) HomsSet(X, cosk2N( ))

where the diagonal arrow is induced by the canonical map N(C) → cosk2N(C). By
Proposition 1.2.18, the two left horizontal maps are bijections, and by Lemma 1.2.7 the
remaining horizontal arrow is a bijection as well. Thus, the vertical map is a bijection if and
only if the diagonal map is a bijection. Since X is arbitrary, the claim follows from Yoneda’s
lemma. ��
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Definition 1.2.22
A morphism in an ∞-category is called an equivalence if its image in the homotopy
category is an isomorphism.

Lemma 1.2.23
A morphism f : x → y in an ∞-category C is an equivalence if and only if there exist
2-simplices σ l : �2 → C and σ r : �2 → C such that

σ l

|�2
0

= (f, id) and σ r

|�2
2

= (f, id).

Here, the notation (g, h) means that the second morphism h is the one from 0 to
2 in �2, and the first morphism is the one from 0 to 1 in the first case, and the one
from 1 to 2 in the second case.

Proof If a 2-simplex σ l exists, then σ l
|�{1,2} is a left inverse of the image of f in hC. Similarly,

σ r
|�{0,1} is a right inverse of the image of f in hC. For the converse, suppose that the image

of f is an equivalence in hC. This means that there exists a 1-simplex g : y → x such that
[fg] and [gf ] are the identity in hC, i.e., that there is a 2-simplex η which witnesses that h

is a composite of f and g, and that there is a further 2-simplex η′ which witnesses that h is
equivalent to the identity. We can use these two 2-simplices (plus a degenerate 2-simplex on
g) to obtain a map �3

2 → C which can be extended due to C being an ∞-category:

x

y

x x

g

g

h

f

idx

idx

Restricting the resulting 3-simplex to the 2-simplex �{0,1,3} yields a 2-simplex σ l . The
argument for σ r is analogous. ��

Definition 1.2.24
An ∞-category is called ∞-groupoid if every morphism is an equivalence.

Definition 1.2.25
The maximal sub-groupoid of an ordinary category is the subcategory consisting of all
isomorphisms and is denoted by C� ⊆ C. For an ∞-category C, we define the maximal
sub-∞-groupoid to be the pullback of simplicial sets
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Remark 1.2.26
For an ordinary category C, we have N(C�) = N(C)�, since by definition there is a
pullback

where the right vertical map composite is the identity, and the lower vertical maps are
induced by the canonical isomorphism h(N(C)) ∼= C.

Lemma 1.2.27
An n-simplex x of an ∞-category C belongs to the maximal sub-∞-groupoid if and
only if all edges are equivalences.

Proof It suffices to observe that an n-simplex in N(hC) is determined by its restriction to all
edges, and that this n-simplex lies in N(hC�) if and only if all edges are isomorphisms in
hC. ��

Corollary 1.2.28
The maximal sub-∞-groupoid of an ∞-category is in fact an ∞-groupoid, and it is the
largest such ∞-groupoid which sits inside the given ∞-category.

Proof Let us first prove that C� is an ∞-category. For this, consider a lifting problem
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for 0 < j < n. Since C is an ∞-category, this problem can be solved in C. The claim follows
if we can prove that if we are given a map �n → C which induces a map

�n
j → �n → C → N(hC)

whose image is contained in N(hC�), then already the map �n → N(hC) factors through
N(hC�). For this, we again recall that an n-simplex of the nerve of a category is determined
by its restriction to the spine. Since the spine is included in the inner horns �n

j for all n, the
claim follows. This formalizes that C� is the sub-∞-category consisting of the equivalences
of C. In particular, it follows that h(C�) = (hC)�, so that C� is an ∞-groupoid. It is then
clear that C� is the largest such ∞-groupoid sitting inside C. ��

Lemma 1.2.29
A Kan complex X is an ∞-groupoid.

Proof It suffices to show that for every morphism inX, there is a left and a right inverse σ l and
σ r , respectively, as in Lemma 1.2.23. But since X is a Kan complex, the maps (f, id) : �2

0 →
X and (f, id) : �2

2 → X can be extended to 2-simplices σ l and σ r . ��

The converse is also true – this is a non-trivial and very important theorem in
higher categories, whose proof will soon be our next aim. But before that, we will
spend some time on more examples of ∞-categories, i.e., on how can we produce
∞-categories.

Definition 1.2.30
Let V be a category. A monoidal structure on V consists of the following data:

(1) A functor − ⊗ −: V × V → V , called the monoidal product;
(2) a unit object 1 ∈ V , together with natural isomorphisms ηl : X → 1 ⊗ X, and

ηr : X → X ⊗ 1, called left unit and right unit; and
(3) natural associativity isomorphisms αX,Y,Z : (X ⊗ Y) ⊗ Z → X ⊗ (Y ⊗ Z).

These data are of course required to satisfy axioms, such as the pentagon axiom.

Example In a category C which admits finite products, there is a cartesian monoidal
structure given by the product bifunctor (X, Y ) �→ X × Y . The unit is given by
the terminal object (a product over the empty set). Dually, a category with finite
coproducts admits a cocartesian monoidal structure with (X, Y ) �→ X�Y . The unit
is given by the initial object (the coproduct over the empty set).
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Explicit examples which we will care about are:

(1) the category (Set,×, ∗)

(2) the category (Cat,×, [0])
(3) the category (sSet,×,�0)

Definition 1.2.31
Let (V,⊗V ,1V ) and (W,⊗W ,1W) be monoidal categories. A lax monoidal functor
consists of the following data:

(1) a functor F : V → W ;
(2) a natural map 1W → F(1V ); and
(3) a natural map FX ⊗W FY → F(X ⊗V Y ).

Dually, an oplax monoidal functor consists of the following data:

(1) a functor F : V → W ;
(2) a natural map F(1V ) → 1W ; and
(3) a natural map F(X ⊗V Y ) → FX ⊗W FY .

The structure morphisms have to satisfy compatibility with respect to the associativity
isomorphisms and the left/right unit isomorphisms. Precisely, the following diagrams are
required to commute:

where αW and αV are the associativity isomorphism in (W,⊗,1) and (V,⊗,1),
respectively. Likewise for the units:

where ηV
r and ηW

r are the right unit isomorphisms of V and W , respectively. Similarly, the
diagram involving left units is required to commute as well. A lax monoidal (or an oplax
monoidal) functor is called monoidal if the natural maps of (2) and (3) are isomorphisms.



1.2 ∞-Categories 37

Definition 1.2.32
Let F and G be lax monoidal functors between monoidal categories V and W . A natural
transformation τ : F → G is called lax monoidal if for all X,Y ∈ V , the diagrams

and

commute. We let Funlax(V,W) be the category whose objects are the lax monoidal
functors and whose morphisms are lax monoidal transformations. Furthermore, we let

Fun⊗(V,W) ⊆ Funlax(V,W)

be the full subcategory on monoidal functors.

Remark 1.2.33
We see, therefore, that the category MonCat of monoidal categories with monoidal
functors is canonically a 2-category: The hom-category between V and W is given by
Funlax(V,W). Of course, in order for this to make sense, we need to observe that the
identity of a monoidal category is canonically lax monoidal (in fact monoidal) and that
the composition of two lax monoidal functors is canonically lax monoidal.

Definition 1.2.34
Let (V,⊗,1) be a monoidal category. Then a V -enriched category C consists of a set
of objects, and for any two objects x, y ∈ C an object HomC(x, y) ∈ V , together with
composition functors

HomC(x, y) ⊗ HomC(y, z) → HomC(x, z),

and furthermore for every object an identity idx

1 → HomC(x, x)
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satisfying the obvious associativity and unitality conditions, namely that the following
diagrams are required to commute:

where α denotes the associativity isomorphism of V, and

Definition 1.2.35
A V -enriched functor between V -enriched categories f : C → D consists of a map
on objects x �→ f (x), and for each two objects a morphism fx,y : HomC(x, y) →
HomD(f x, fy) in V such that the diagrams

and

commute.

Definition 1.2.36
Let V be a monoidal category. Then we let CatV be the category of V -enriched categories,
i.e., its objects are V -enriched categories and its morphisms are V -enriched functors.

Example A Set-enriched category is just an ordinary category. A Cat-enriched
category is a strict 2-category.
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ExampleA Cat-enriched category with one object is the same datum as a monoidal
category which is strictly associative (i.e., where the associativity isomorphisms are
the identity). An enriched functor between two such categories is the same datum
as a monoidal functor.

Lemma 1.2.37
If 
 : V → V ′ is a lax monoidal functor between monoidal categories, then applying

 to each hom-object yields a functor 
∗ : CatV → CatV ′ . In fact, this construction
determines a 2-functor

MonCat → Cat

from the 2-category of monoidal categories (with lax monoidal functors and monoidal
transformations as morphisms and 2-morphisms) to the 2-category of categories (with
functors and natural transformations as morphisms and 2-morphisms). In particular,
a monoidal adjunction between V and V ′ determines an adjunction on the level of
enriched categories.

Proof In order to construct this 2-functor, we first consider the map on the level of objects: It
takes a monoidal category V to the category CatV of V -enriched categories. In order for this
map to become a 2-functor, we need to construct for every pair V,W of monoidal categories
a functor

Funlax(V,W) → Fun(CatV ,CatW)

and then show that this construction is compatible with composition. For the construction
of this functor, again we first consider its effect on objects: Given a lax monoidal functor

 : V → W and a V -enriched category C, we consider the W -enriched category 
∗(C),
whose objects are the same as the objects of C, and for X,Y ∈ ob(C) we define

Hom
∗(C)(X, Y ) = 
(HomC(X, Y )).

It is straightforward to show that 
∗(C) is a W -enriched category: For instance, in order
to show that composition satisfies the associativity constraint, one uses the compatibility of

 with the associativity isomorphisms of V and W . Next, we need to explain the effect
on morphisms. For this purpose, let τ : 
 → � be a monoidal transformation. We wish
to construct a natural transformation between 
∗ and �∗. Concretely, we need to construct
natural maps 
∗(C) → �∗(C) in CatW , i.e., natural W -enriched functors τ∗ : 
∗(C) →
�∗(C). On objects, this functor is defined to be the identity, and on morphisms between X

and Y we have to construct a map

τ∗ : 
(HomC(X, Y )) → �(HomC(X, Y )).
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For this, we simply use the natural map τHomC(X,Y ) given by the natural transformation
τ : 
 → �. In order to see that this is compatible with composition, we use the fact that
τ is a monoidal transformation, so that the diagram

commutes. Then we use naturality of τ to see that the diagram

also commutes. Glueing these two diagrams together, we find that the map τ∗ is compatible
with composition, and thus is in fact a W -enriched functor 
∗(C) → �∗(C) as needed.

Now it is also clear by definition that for two composable lax monoidal functors � and 
,
we have �∗(
∗(C)) = (� ◦ 
)∗(C), so that compatibility with composition is an immediate
consequence.

To see the “in particular” part of the claim is now easy: A monoidal adjunction consists
of lax monoidal functors 
 and � and unit and counit transformations which are themselves
monoidal transformations. By the previously established parts, these are sent to functors 
∗
and �∗ equipped with candidates for the unit and counit. The only thing to check is the
triangle identities, but they follow from the fact that they hold for 
 and �, and that the
constructed functor preserves identities. ��

Definition 1.2.38
Let V be a monoidal category and C a V -enriched category. Then its underlying category
uC is obtained via the lax monoidal functor

Hom(1,−) : V → Set.

In formulas, we have

uC = HomV (1,−)∗(C) ∈ CatSet = Cat.

Definition 1.2.39
For the sake of simplicity, we will call a category which is enriched in simplicial sets a
simplicial category. Here, sSet is viewed as a monoidal category via the cartesian product,
and we will write Cat� for CatsSet.
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Remark 1.2.40
Note that there is some ambiguity in the above definition: Usually a simplicial category
would rather refer to a simplicial object in categories, i.e., a functor �op → Cat.
Luckily we have the following lemma about this:

Lemma 1.2.41
There is a canonical fully faithful embedding Cat� → Fun(�op,Cat) determined by the
family of functors (evn)∗ : Cat� → Cat, and the essential image can be characterized
as those simplicial objects in categories whose underlying simplicial set of objects is
constant.

Lemma 1.2.42
Suppose that F : C → D is left-adjoint to G : D → C. Furthermore, suppose that

(1) C is cocomplete, and
(2) G is fully faithful.

Then D is cocomplete as well.
Dually, if D is complete and F is fully faithful, then C is complete as well.

Proof Assume that (1) and (2) hold. Let X : I → D be a diagram and consider the object
F(colimI G(Xi)), which exists since C is cocomplete. We wish to prove that it satisfies the
universal property of a colimit:

HomD(F(colim
I

G(Xi)), Y ) ∼= HomC(colim
I

G(Xi),G(Y ))

∼= lim
I

HomC(G(Xi),G(Y ))

∼= lim
I

HomC(Xi, Y )

where the last bijection holds by full faithfulness of G.
Dually, let X : I → C be a diagram and consider the object G(limI F (Xi)), which exists

since D is complete. Then we calculate that

HomC(Y,G(lim
I

F (Xi))) ∼= HomD(F(Y ), lim
I

F (Xi))

∼= lim
I

HomD(F(Y ), F(Xi ))

∼= lim
I

HomC(Y,Xi),

where the last bijection uses the fact that F is fully faithful. ��
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Proposition 1.2.43
The category Cat is bicomplete, and the functor ob(−) : Cat → Set preserves limits
and colimits.

Proof The case of limits can be done by hand: Given a diagram C : I → Cat, sending i ∈ I

to Ci , we define its limit limI Ci as follows:

(1) ob(limI Ci ) = limI ob(Ci ), and
(2) for any two objects {Xi}i∈I and {Yi}i∈I we have

HomlimI Ci
({Xi}, {Yi}) = lim

I
HomCi

(Xi, Yi).

In order to see that this is in fact a category, we use the fact that limits commute with products
(when defining composition) and that a canonical map exists from a limit indexed over I × I

to the limit indexed over the restriction to I along the diagonal. (This is one reason why the
situation is more complicated with colimits.) By definition then, the functor ob(−) : Cat →
Set commutes with limits (as it must do, since it is right-adjoint to the discrete category
functor d : Set → Cat).

For the proof of the existence of colimits, we make use of Lemma 1.2.42: We consider
the adjunction (h,N) of functors between sSet and Cat of Proposition 1.2.18. We have seen
that

(1) sSet is cocomplete (in fact, bicomplete by Corollary 1.1.24), and
(2) N : Cat → sSet is fully faithful, see Corollary 1.2.20.

It follows that Cat is cocomplete and that a colimit of a diagram C : I → Cat is given
by h(colimI N(Ci )). With this, we calculate that the object functor commutes with colimits
as follows:

ob(colim
I

Ci ) ∼= ob(h(colim
I

N(Ci )))

∼= (colim
I

N(Ci ))0 ∼= colim
I

(N(Ci )0)

∼= colim
I

ob(Ci )

��

Lemma 1.2.44
Let C′ ⊆ C be a full subcategory of a category C and let X : I → C′ be a diagram. If X
has a (co)limit in C which happens to lie in C′, then this is also a (co)limit in C′.
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ProofObvious from the universal property and the fact that the inclusion is full. ��

Corollary 1.2.45
The category Cat� is bicomplete.

Proof Consider an I -shaped diagram of simplicial categories Ci . By Lemma 1.2.41, this
gives rise to an I -shaped diagram in Fun(�op,Cat), whose associated I -shaped diagram of
simplicial sets of objects in constant, i.e., for all i ∈ I , we find that ob(Ci ) is a constant
simplicial set. We wish to show that in this case ob(colimI Ci ) is also a constant simplicial
set. By Proposition 1.2.43, we have

ob(colim
I

Ci ) ∼= colim
I

ob(Ci ),

and the latter is a colimit in simplicial sets, over constant simplicial sets. Since the constant
functor c : Set → sSet admits a right adjoint (ev0), it preserves colimits. Therefore, the
colimit over constant simplicial sets is itself constant (on the colimit of the sets involved).
The argument for limits works the same. ��

Remark 1.2.46
Nothing is special about � here. In fact, the same argument holds to prove that for
any small category C, there is a fully faithful inclusion CatP(C) ⊆ Fun(Cop,Cat) with
essential image given by those functors whose presheaf of objects is constant. It follows
completely analogously that CatP(C) is bicomplete. Here, we always use the pointwise
(cartesian) monoidal structure on P(C).

Example The nerve functor N : Cat → sSet is monoidal: It preserves products since
it is a right adjoint. Hence, given a 2-category, we obtain a simplicial category by
applying the nerve functor to all hom-categories. Furthermore, for a 2-category C

we have u(N∗(C)) = uC, simply because

HomsSet(�
0,−)∗ ◦ N∗ = (HomsSet(�

0,−) ◦ N)

= HomsSet(�
0,N(−))

= HomCat(h�0,−),

and h�0 is the unit of the monoidal structure on Cat given by cartesian product.
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Lemma 1.2.47
The functors c : Set → sSet and π0, ev0 : sSet → Set are canonically monoidal.

ProofWe claim that every functor F : (V,×, ∗) → (W,×, ∗) is canonically oplax monoidal.
The oplax monoidal structure maps are given by

1. F(∗) → ∗, i.e., the unique map to the terminal object of W , and
2. F(X × Y) → F(X) × F(Y ) given by the effect of F on the two projections

X ← X × Y → Y.

It hence suffices to check that the canonical oplax structure maps in our examples are
isomorphisms. For c and ev0, this follows directly from the definitions. Only the functor
π0 requires an actual argument. We want to check that the map

π0(X × Y) → π0(X) × π0(Y )

is a bijection. By definition of π0 of a simplicial set, Definition 1.1.9, we have a commutative
square

(X × Y )0 X0 × Y0

π0(X Y ) π0(X) π0(Y )

∼=

in which the vertical maps are bijections. Since the top horizontal map is a bijection (this
is the monoidality of ev0), it follows that the oplax monoidal structure map is surjective. In
order to see that it is injective, it suffices to check that generators of the relations can be lifted.
Since these are given by 1-simplices, and since ev1 is also monoidal, the claim follows. Also,
it follows directly that the map π0(∗) → ∗ is an isomorphism. ��

Definition 1.2.48
We obtain the following functors:

(1) c = c∗ : Cat → Cat�, which sends a category to the simplicially enriched category
with constant simplicial enrichment;

(2) π = (π0)∗ : Cat� → Cat, called the homotopy category of a simplicial category; and
(3) u = (ev0)∗ : Cat� → Cat, called the underlying category.

Notice that ev0 = HomsSet(�
0,−), therefore it is the same underlying category as in

Definition 1.2.38.
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Definition 1.2.49
A simplicial functor f : C → D between simplicial categories is called a weak
equivalence if it induces

(1) a weak equivalence on all hom-simplicial sets (weakly fully faithful), and
(2) an essentially surjective functor π(C) → π(D) (weakly essentially surjective).

Lemma 1.2.50
Every functor between cartesian monoidal categories is canonically oplax monoidal.
Every natural transformation between two such functors is also canonically oplax
monoidal. In particular, the adjunctions (π0, c) and (c, ev0) are monoidal adjunc-
tions.

Proof In the proof of Lemma 1.2.47, we have seen that every functor F : (V,×, ∗) →
(W,×, ∗) is canonically oplax monoidal. So let τ : F → G be a natural transformation.
We wish to show that the diagram

F(X × Y ) F (X) × F(Y )

G(X Y) G(X) G(Y )

τX×Y τX×τY

commutes. For this, it suffices to check that each of the two following squares commutes:

F(X) F(X × Y ) F (Y )

G(X) G(X Y) G(Y )

τX τX×Y τY

But this follows from naturality of τ .
It now suffices to show that an oplax monoidal transformation between monoidal functors

is also a monoidal transformation. But this follows from the general fact that if a square which
both vertical maps being isomorphisms commutes, then the square with the inverse vertical
maps also commutes. ��

Corollary 1.2.51
The two functors c : Cat → Cat� and π : Cat� → Cat form an adjoint pair, with π

being left-adjoint to the constant functor c. Similarly, the two functors u : Cat� → Cat
and c : Cat → Cat� form an adjoint pair, with c being left-adjoint to the underlying
functor.



46 1 Categories, Simplicial Sets, and Infinity-Categories

Proof This follows from Lemmas 1.2.37 and 1.2.50. ��

Observation 1.2.52
The adjunction gives rise to a canonical functor C → cπ(C) of simplicial categories.

Definition 1.2.53
Given a simplicial category C and two objects x, y ∈ C, we say that a morphism from
x to y is a morphism in the underlying category uC. In other words, it is a 0-simplex
of HomC(x, y). Such a morphism is called an equivalence if its image in π(C) is an
isomorphism.

Next, we wish to extend the notion of the nerve of a category to simplicially
enriched categories. For this purpose, we need a version of the category [n] which
is well suited for simplicially enriched categories.

Definition 1.2.54
Let J be a finite non-empty linearly ordered set, and let i, j be elements of this set. We
let Pi,j be the following set of subsets of J :

Pi,j = {I ⊆ J : i, j ∈ I and k ∈ I ⇒ i ≤ k ≤ j}

In words, Pi,j consists of all subsets of [i, j ] ⊆ J which contain i and j .
Pi,j is partially ordered by inclusion: I ≤ I ′ ⇔ I ⊆ I ′. Notice that Pi,j is only

non-empty if i ≤ j .

Observation 1.2.55
Given a triple i ≤ j ≤ k in J , there is a canonical map of partially ordered sets

Pi,j × Pj,k → Pi,k,

given by sending (I, I ′) to I ∪ I ′. This clearly defines an associative binary operation.

As a consequence, we obtain the following definition.

Definition 1.2.56
Let J be a non-empty linearly ordered set. Then the following defines a simplicially
enriched category C[�J ] ∈ Cat�. Objects of C[�J ] are given by the elements of J .
Furthermore,
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HomC[�J ](i, j) =
⎧
⎨

⎩

∅ if j < i

N(Pi,j ) if i ≤ j.

Composition is defined via the previous observation.

Lemma 1.2.57
For every n ≥ 1, we have that N(P0,n) is isomorphic to (�1)n−1. Furthermore, Pi,j

∼=
P0,j−i .

Proof The latter statement simply follows by choosing an isomorphism J ∼= [n] for some
n, and then considering the unique order-preserving isomorphism of [i, j ] with [0, j − i]. In
order to show that N(P0,n) ∼= (�1)n−1, it suffices to find an isomorphism of posets

P0,n ∼= [1] × · · · × [1],

where the latter product has n−1 factors. This simply comes from the following construction:
A subset I ⊆ [n] containing {0, n} is determined by checking which of the elements
1, . . . , n − 1 is contained in I . We label an element contained in I with a 1 and elements
not contained in I with a 0. This constructs a map of posets P0,n → [1] × · · · × [1], which
is clearly an isomorphism. ��

Lemma 1.2.58
Let C be a category with initial or terminal object. Then N(C) is contractible, i.e., its
identity map is homotopic to the constant map at the initial or terminal object.

Proof Let us consider the case where C has an initial object ∅. (The other case follows
from the fact that a simplicial set X is contractible if and only if Xop is contractible.) We
claim that the identity functor of C admits a natural transformation from the constant functor
with value ∅, which is simply given on an object X ∈ C by the unique map ∅ → X. The
relevant diagrams commute by the uniqueness of the maps. We obtain a functor C×[1] → C

whose restriction to 0 is the constant map at ∅ and whose restriction to 1 is the identity of C.
Applying the nerve functor N, we obtain a simplicial homotopy

N(C) × �1 → N(C)

from the constant map at the vertex given by ∅ to the identity of N(C). ��
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Corollary 1.2.59
For i ≤ j , the simplicial set HomC[�J ](i, j) is contractible.

ProofWe have just seen that HomC[�J ](i, j) ∼= �j−i−1 = N([1] × · · · × [1]). The category
[1] × · · · × [1] has both an initial and a terminal object, so we can apply Lemma 1.2.58. ��

Remark 1.2.60
The functor | − |: sSet → Top preserves products. In order to see this, it suffices
to check that |�n × �m| ∼= �n

top × �m
top, which is a concrete calculation. Hence,

a simplicial homotopy induces a homotopy of geometric realizations. It follows that
every contractible simplicial set is weakly contractible (i.e., its geometric realization is
contractible).

Lemma 1.2.61
There is a unique isomorphism π(C[�n]) ∼= [n] which is the identity on objects. By
adjunction we obtain a canonical functor C[�n] → c[n], and this functor is a weak
equivalence of simplicial categories.

Proof Everything follows from Corollary 1.2.59, which calculates π(C[�n]) to be [n]. It
follows that the induced functor C[�n] → c[n] is bijective on objects (and thus weakly
essentially surjective) and a weak equivalence on hom-simplicial sets. ��

Lemma 1.2.62
The association J �→ C[�J ] extends to a functor

Lin.or.Set → Cat�.

In particular, we obtain a functor

� → Cat� [n] �→ C[�n]

which is a cosimplicial object in simplicially enriched categories.

ProofWe need to show that every map J → J ′ of linearly ordered sets induces a simplicially
enriched functor C[�J ] → C[�J ′ ]. For this, it suffices to explain how such a map J → J ′
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induces, for every i ≤ j in J , a map of posets Pi,j → Pf (i),f (j). This map is simply
given by sending a subset I to its image f (I). It is easy to see that this produces in fact a
functor. ��

Definition 1.2.63
Let C be a simplicially enriched category. Then we define its simplicial nerve (or the
homotopy-coherent nerve) as the following simplicial set:

N(C)n = HomCat�(C[�n],C)

Lemma 1.2.64
If C is an ordinary category, viewed as a simplicially enriched category cC via the
constant functor, then there is an isomorphism

N(C) ∼= N(cC).

Proof This follows from:

N(cC)n = HomCat�(C[�n], cC)

∼= HomCat(π(C[�n]),C)

∼= HomCat([n],C) = N(C)n

The only thing that needs further justification is the isomorphism π(C[�n]) ∼= [n], which we
proved in Lemma 1.2.61. ��

Remark 1.2.65
The analog of such a statement with π(C) and uC is wrong!

Observation 1.2.66
Let C be a simplicially enriched category. Let us now investigate the simplicial set N(C)

in more detail. For this purpose, we recall that

N(C)n = HomCat�(C[�n],C).

(continued)



50 1 Categories, Simplicial Sets, and Infinity-Categories

1.2.66 (continued)

Unravelling the simplicial categories C[�0] and C[�1], we find:
(1) C[�0] is a simplicial category with a single object, whose morphism-simplicial set

is given by N(P0,0) which is also given by �0.
(2) C[�1] is a simplicial category with two objects, 0 and 1, and all morphism-

simplicial sets are given by �0.

In other words, both C[�0] and C[�1] are given by c[0] and c[1], where we view
[0] and [1] as categories and then apply the constant functor c : Cat → Cat�. As a
consequence, we obtain

(1) N(C)0 = HomCat�(C[�0],C) ∼= HomCat([0], uC), and
(2) N(C)1 = HomCat�(C[�1],C) ∼= HomCat([1], uC),

by Corollary 1.2.51. In words, objects of N(C) are given by the objects of C, and
morphisms of N(C) are given by the morphisms (i.e., the 0-simplices of the hom-
simplicial sets) of C.
Let us go one step further and analyze the simplicial category C[�2], whose objects are
given by {0, 1, 2}. All endomorphism-simplicial sets are given by �0. Furthermore,

HomC[�2](0, 1) = �0 = HomC[�2](1, 2).

However, in order to analyze the hom-simplicial set from 0 to 2, we have to investigate
N(P0,2). By definition, P0,2 is the partially ordered set of subsets of {0 < 1 < 2} which
contain 0 and 2. There are precisely two such subsets, so that we obtain P0,2 = [1]. In
particular,

HomC[�2](0, 2) = N(P0,2) = �1.

Subsequently, we find that a 2-simplex in N(C) consists of the following data: objects
X, Y , and Z (associated with the three objects 0, 1, and 2); a morphism f : X →
Y (associated with the unique morphism from 0 to 1 in C[�2]) and a morphism
g : Y → Z (associated with the unique morphism from 1 to 2 in C[�2]); a 1-simplex
�1 → HomC(X,Z) (associated with the hom-simplicial set between 0 and 2 in C[�2])
whose restriction to 0 is given by gf and whose restriction to 1 is given by some other
morphism.
Informally, a 2-simplex thus consists of the data of two composable morphisms X → Y

and Y → Z, a further morphism X → Z and a homotopy between the composite of
the first two morphisms to the last morphism.
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Lemma 1.2.67
The category Cat� of simplicially enriched categories admits all small colimits. Hence,
there exists a unique colimit-preserving functor

C[−]: sSet → Cat�

which sends �n to C[�n]. This functor is automatically left-adjoint to the simplicial
nerve functor.

Proof The existence of colimits was dealt with in Corollary 1.2.45. The rest of the proof is
formal, and we have seen the argument several times. ��

Fact 1.2.68 Given a simplicial set X, consider sub-simplicial sets Ai ⊆ X. Then the union
A = ⋃

Ai is also a sub-simplicial set of X. In this situation, we find that C[A] is the sub-
simplicial category of C[X] generated by the C[Ai]. Recall that a sub-simplicial category of
a simplicial category C is determined by a subset of the objects and, for any two such objects,
a sub-simplicial set of the hom-simplicial set in C.

This fact is, e.g., shown in [Joy07, Corollary 1.15]. It builds fundamentally on the fact that
the functor C[−]: sSet → Cat� sends monomorphisms of simplicial sets to monomorphisms
of simplicial categories.

Lemma 1.2.69
Let 0 < j < n and consider the horn �n

j . We have that C[�n
j ] is the sub-simplicial

category of C[�n] with the following properties:

(1) The objects of C[�n
j ] are given by the vertices of �n

j and, therefore, by all objects
of C[�n].

(2) The hom-simplicial sets are given as follows:

HomC[�n
j ](i, k) = HomC[�n](i, k)

unless (i, k) = (0, n), and

HomC[�n
j ](0, n) ⊆ HomC[�n](0, n) = N(P0,n)

is given by the sub-simplicial set of (�1)n−1 obtained by deleting the interior and
the bottom j -face.
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Proof Let us first show that the candidate for C[�n
j ] is in fact a sub-simplicial category of

C[�n]. We know that �n
j = ⋃

i �=j

�[n]\{i}. So let us first describe the sub-simplicial category

C[�[n]\{i}] ⊆ C[�n].

The objects of this subcategory are given by all objects except for the object corresponding to
i ∈ [n]. Now assume k, l ∈ [n]\{i} with k ≤ l. If l < i, then there is an obvious isomorphism

P
[n]\{i}
k,l

∼= P
[n]
k,l

where the superscript indicates in which linearly ordered set to perform the construction Pk,l

of Definition 1.2.54. Thus we obtain an equality of hom-simplicial sets

HomC[�[n]\{i}](k, l) = HomC[�n](k, l).

Likewise, there is such an isomorphism for k > i. Now let (k, l) �= (0, n), i.e., either k �= 0 or
l �= n. Assume first that k �= 0. Then we have the following chain on inclusions of simplicial
sets:

HomC[�[n]\{0}](k, l) ⊆ HomC[�n
j ](k, l) ⊆ HomC[�n](k, l)

where the composition is an equality by the previous arguments. Therefore, we find that both
inclusions must in fact be equalities. If l �= n, the same argument works. Summing up, we
find that

HomC[�n
j ](k, l) = HomC[�n](k, l)

unless (k, l) = (0, n).
Next, let us determine HomC[�n

j ](0, n). By Fact 1.2.68, we have for every i �= j and
i �= 0, n inclusions as follows:

HomC[�[n]\{i}](0, n) ⊆ HomC[�n
j ](0, n) ⊆ HomC[�n](0, n).

For 0 < i < n, we find that

P
[n]\{i}
0,n ⊆ P

[n]
0,n

is a sub-poset, consisting precisely of those I ∈ P
[n]
k,l for which i /∈ I . In other words, it is

given by the map of posets

[1]×(n−2) → [1]×(n−1)
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which includes a 0 at the ith spot of [1]×(n−1) . Upon taking the nerve, this yields the map
(�1)n−2 ⊆ (�1)n−1, which is the zero-vertex of �1 in the ith coordinate. It follows that
for every i �= j , the face (�1)n−2 ⊆ (�1)n−1 with the ith entry being 0 is contained in
HomC[�n

j ](0, n). Let us call the face with the ith entry being 0 the bottom i-face. Then we
find that, a priori, the bottom j -face is not contained in HomC[�n

j ](0, n), as promised in the
statement of the lemma. It remains to show that the top k-face is contained in HomC[�n

j ](0, n)

for all 0 < k < n. For this, we consider the diagram

which encodes the composition in the respective categories. This diagram must commute, as
C[�n

j ] is a sub-simplicial category of C[�n]. Since the left vertical map is an isomorphism,
it hence suffices to show that the top i-face is contained in the image of the lower horizontal
map. This map is induced by the map of posets

P0,k × Pk,n → P0,n

which is induced by sending (I, I ′) to I ∪ I ′. Since both I and I ′ contain the element k, after
identifying these posets with cubes as in Lemma 1.2.57, we obtain the map

(�1)n−2 ∼= (�1)k−1 × (�1)n−k−1 → (�1)n−1

which is induced by inserting a 1 in the kth slot. This shows that the top k-face is contained
in HomC[�n

j ](0, n). Since we already know that this punctured cube gives rise to a sub-
simplicial category, and that C[�n

j ] is contained in it and itself contains the sub-simplicial
categories determined by the i-faces of �n for i �= j , the lemma is proved. ��

Lemma 1.2.70
The coherent nerve of a simplicial category C is a composer. Furthermore, it is an ∞-
category if all hom-simplicial sets are Kan complexes, i.e., if it is in fact enriched in the
symmetric monoidal category of Kan complexes.

ProofWe consider the extension problem
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which, by adjunction, is equivalent to the extension problem

In order to show that the latter can be solved, it suffices to show that the map C[In] → C[�n]
has a retraction. To see this, we first claim that C[In] ∼= c[n]. This follows simply from the
fact that it is true for n = 1 and subsequent induction (using the fact that In ∼= In−1 ��0 I 1

and that the functor c : Cat → Cat� preserves colimits). In Lemma 1.2.61, we have seen that
there is a unique simplicial functor C[�n] → c[n] which is the identity on objects. It follows
that the composition

c[n] ∼= C[In] → C[�n] → c[n]

is a functor which is the identity on objects, and therefore an isomorphism.
In order to show that, in the case of a Kan enrichment, N(C) is an ∞-category, we need

to solve the extension problem

for 0 < j < n.
By adjunction, we need to argue why every simplicially enriched functor C[�n

j ] → C

extends to a simplicially enriched functor C[�n] → C, provided that 0 < j < n. For this
purpose, we use our analysis of C[�n

j ] in Lemma 1.2.69.
In order to solve the extension problem which we are interested in, it thus suffices to prove

that there exists an extension in the diagram

From the description of Lemma 1.2.69 and Fact 1.1.48, it follows that the vertical map
is an anodyne map of simplicial sets. (We will also give an independent argument in
Lemma 1.3.31.) Hence, the dotted arrow exists. It now suffices to show that this construction
in fact produces a simplicial functor C[�n] → C. To see this, one uses that HomC[�n](0, 0) =
�0 = HomC[�n](n, n), so that no new relations for functoriality are to be checked: Since the
diagram
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commutes, any composition which factors through the object k, with 0 < k < n, is already
contained in the sub-simplicial category C[�n

j ]. ��

Observation 1.2.71
By applying the nerve, we find that a strict 2-category gives rise to a simplicial category,
so that its coherent nerve is a composer. Moreover, a strict (2, 1)-category gives rise to
a simplicial category where all hom-simplicial sets are nerves of groupoids and thus
Kan complexes by Lemma 1.1.54. In particular, a strict (2, 1)-category gives rise to an
∞-category in our sense.

Definition 1.2.72
Consider the simplicial category with CW-complexes as objects and hom-simplicial sets
given by the singular set of the mapping space. (Notice that the singular set commutes
with products.) The simplicial nerve of this category yields an ∞-category which we call
the ∞-category of spaces and denote by Spc.

Observation 1.2.73
Objects of Spc are CW-complexes, and morphisms are given by points in the space
map(X, Y ), i.e., by a continuous map from X to Y . The homotopy category is what one
would expect: Morphisms are homotopy classes of maps.

Remark 1.2.74
We would like to have a “purely simplicial” model of the ∞-category of spaces (what
a perverse thing to say—but it comes from the fact that we wish to think of Kan
complexes/spaces as ∞-groupoids and later want to have spaces and ∞-categories on
equal footing), i.e., a model where we directly construct a simplicial category whose
objects are Kan complexes. For this purpose, we will need to show that for a simplicial
set K and a Kan complex X, the simplicial set of maps Hom(K,X) is again a Kan
complex. The requirements for showing this are also needed on the way of showing
that ∞-groupoids are Kan complexes, and we will start to develop these tools in the
next section.
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Lemma 1.2.75
The product of ∞-categories is an ∞-category, and the coproduct of ∞-categories is
also an ∞-category.

Proof For products, one can solve the extension problem in every ∞-category individually,
which provides an extension for the product. For coproducts, we observe that both �n

j and
�n are connected. Therefore, an extension problem for a coproduct of ∞-categories is in fact
an extension problem for a single one. ��

Definition 1.2.76
A sub-∞-category C′ of an ∞-category C is a sub-simplicial set determined by a subset
X ⊆ C0 of 0-simplices and a subset S ⊆ C1 of 1-simplices between objects lying in X,
such that S contains identities and is closed under compositions and equivalences. Then
an n-simplex of C belongs to C′ if and only if the edges of its restriction to the spine In

are contained in S. A subcategory is called full (on objects X ⊆ C0) if S equals the set of
all 1-simplices whose boundary lies in X.

Lemma 1.2.77
A sub-∞-category of an ∞-category is itself an ∞-category. Its homotopy category is
the subcategory of hC on the image of the morphisms lying in S. The diagram

is a pullback. Furthermore, for any subcategory (hC)′ ⊆ hC of the homotopy category,
this pullback defines a sub-∞-category of C with X and S given by the preimage of
objects and morphisms along the canonical map C → N(hC).

Proof Let C be an ∞-category and let D ⊆ hC be a subcategory of its homotopy category.
Let C′ be the pullback N(D) ×N(hC) C. Since pullbacks preserve monomorphisms, C′ is a
sub-simplicial set of C. Let us spell out what it means for an n-simplex of C to lie in C′: It
means precisely that the induced n-simplex of N(hC) lies in N(D). This is the case if and
only if the spine, and thus every edge of the simplex, lies in D. Now observe that a subset
S ⊆ C1 which contains all identities of objects in X and is closed under compositions is in
fact the preimage of the 1-morphisms of the nerve of a subcategory of hC. Notice that in the
above definition, we have that (C′)1 = S. ��
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Corollary 1.2.78
There is a bijective correspondence between sub-∞-categories of C and subcategories
of hC induced by taking the homotopy category. Full sub-∞-categories of C correspond
precisely to full subcategories of hC.

Definition 1.2.79
A natural transformation between two functors f, g : C → D is a simplicial map C ×
�1 → D which restricts appropriately to the given functors.

Observation 1.2.80
Functors and natural transformations of functors between X and Y are precisely the 0-
and 1-simplices of the hom-simplicial set Hom(X, Y ). As in ordinary category theory,
we would like to have an ∞-category of functors between two ∞-categories. Also, one
would expect N(Fun(C,D)) = Fun(NC,ND). Since one also has N(Fun(C,D)) =
Hom(NC,ND) (due to the nerve functor being fully faithful), one might hope that the
hom-simplicial set is again an ∞-category. This will turn out to be true, and like in the
case of Kan complexes, it is not a triviality. One of the objectives of the next sections
is to prove this fact.

1.3 Anodyne Maps and Fibrations

The goal of this section is to set up some combinatorial notions which will allow us
to prove that∞-groupoids, i.e.,∞-categories in which everymorphism is invertible,
are in fact Kan complexes. These methods are central to our definition of the ∞-
category of spaces and of the ∞-category of ∞-categories. This section can be seen
as one of the technical hearts of the theory, and we try to give a concise treatment.
We start with the notion of saturated sets and discuss a special case of what is called
the small object argument of Quillen. Then we will use these findings to prove that
certain natural operations which one can perform in simplicial sets preserve ∞-
categories and ∞-groupoids, most notably Theorem 1.3.37 and its consequences.
From this, we shall obtain, for any two objects of an ∞-category, an ∞-category of
morphisms between them in a canonical way. It will be the content of the following
sections to show that these ∞-categories of morphisms are in fact ∞-groupoids.

Definition 1.3.1
A map of simplicial sets X → Y is an (inner, left, right) fibration if it satisfies the
right lifting property (RLP) with respect to (inner, left, right) horn inclusions as depicted



58 1 Categories, Simplicial Sets, and Infinity-Categories

by the diagram

n
j X

n Y

Definition 1.3.2
A map of simplicial sets A → B is an (inner, left, right) anodyne map, if it satisfies the
left lifting property (LLP) with respect to (inner, left, right) fibrations as depicted by the
diagram

A X

B Y

Definition 1.3.3
Let S be a set of morphisms in a category C. We let χR(S) be the set of morphisms
having the RLP with respect to S, and we let χL(S) be the set of morphisms having the
LLP with respect to S. Furthemore, we let χ(S) = χL(χR(S)), i.e., χ(S) is the set of
morphisms which have the LLP with respect to morphisms having the RLP with respect
to S.

Example Let S be the set of (inner, left, right) horn inclusions. Then the (inner, left,
right) fibrations are given by χR(S), and the (inner-, left-, right-) anodyne maps are
given by χ(S).

Next, we want to introduce the notion of saturated sets of maps of simplicial sets.
For this purpose, we need the following definition.

Definition 1.3.4
Let C be a category. A morphism f : A → B is a retract of a morphism f ′ : A′ → B ′ if
there is a commutative diagram

A A A

B B B

f

id

f f

id
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Definition 1.3.5
A saturated set of morphisms of simplicial sets is a set of morphisms T which is
closed under taking pushouts (along arbitrary maps), arbitrary coproducts, countable
compositions (i.e., colimits along N), and retracts. Given an arbitrary set of morphisms S,
we call the smallest saturated set containing S the saturated closure of S, and we denote
it by S.

Remark 1.3.6
Let us state more precisely what the conditions of Definition 1.3.5 mean: Being closed
under arbitrary coproducts means that given a family {fi}i∈I such that each fi is an
element of T , then also

∐

i∈I

fi is an element of T ; and being closed under pushouts

means that given a map f : A → B belonging to T and any other map ϕ : A → A′,
then the map f ′ in the following pushout diagram also belongs to T :

A A

B B

ϕ

f f

The set T is called closed under countable compositions if for all diagrams X : N →
sSet the following condition holds: If, for every i ∈ N, the map

X(i) → X(i + 1)

is contained is S, then the map X(0) → colimN X is also contained in S. Finally, T is
called closed under retracts if for f and f ′ as in Definition 1.3.4, if f ′ is an element of
T , then so is f .

Remark 1.3.7
Notice that the intersection of saturated sets is again saturated. Therefore, in order to
see that the saturated closure exists, it suffices to show that there is a saturated set
containing S. One can, e.g., simply take the set of all morphisms, which is obviously
saturated and contains S.

ExampleThe set of monomorphisms in sSet is a saturated set.

Lemma 1.3.8
Given a set of morphisms S, we have that χL(S) is a saturated set. In particular, χ(S)

is a saturated set.
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Proof Let α : A → B be a morphism in χL(S) and let ϕ : A → A′ be an arbitrary morphism.
Consider the pushout B ′ = A′ �A B. We wish to show that the canonical map A′ → B ′ is
contained in χL(S). So let f : X → Y be a map in S and consider the diagram

A A X

B B Y

where we wish to construct the dashed map. By assumption, we have the dotted map, and
hence obtain the dashed map by the universal property of a pushout. Likewise, suppose that
A → B is a retract of A′ → B ′ and that A′ → B ′ is contained in χL(S). In order to show
that then A → B is also contained in χL(S), we consider a map f : X → Y in S and the
diagram

A A A X

B B B Y

where we wish to show that the dashed arrow exists. Again, the dotted arrow exists, which
we may restrict to B along the map B → B ′.

Suppose now that a family {fi : Ai → Bi}i∈I of elements of χL(S) is given. We then
want to show that

∐

i∈I

fi ∈ χL(S) as well. For this purpose, consider a lifting problem

i∈I

Ai X

i I

Bi Y

i∈I

fi
ϕ

with ϕ : X → Y being an element of S. Then the dashed arrow exists simply by the universal
property of coproducts and the assumption that each fi is an element of χL(S).

It remains to show that for any diagram A : N → C, where each map Ai → Ai+1 is
contained in χL(S), the map A0 → A = colimi Xi is also contained in χL(S). This follows
simply from the universal property of colimits: We consider again f : X → Y in S and a
diagram

A0 X

A Y
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where we need to show existence of the dashed arrow. Since this is a map out of a colimit, it
suffices to show that there exist compatible maps Ai → X which make everything commute.
But this can be done inductively, using the fact that each map Ai → Ai+1 is contained in
χL(S). ��

The following result is known as the small object argument. It is a very useful
tool for constructing non-trivial factorizations of maps.

Proposition 1.3.9
Let S be a set of morphisms {Ai → Bi }i∈I of simplicial sets such that, for every
i ∈ I , the simplicial set Ai has only finitely many non-degenerate simplices. If f is an
arbitrary morphism, then f can be factored into a map contained in S followed by a
map which has the RLP with respect to S.

Proof First, consider the set �S which consists of triples (αi, ui , vi), where αi : Ai → Bi is
an element of S, and where ui : Ai → X and vi : Bi → Y are maps such that the diagram

Ai X

Bi Y

ui

αi f

vi

commutes. We obtain a commutative diagram

S

Ai X

S

Bi E1(f )

Y

where E1(f ) is defined to be the pushout. Since S is closed under small coproducts and
pushouts, we can deduce that the map X → E1(f ) is contained in S.

Doing the same with the map E1(f ) → Y instead of the map f : X → Y , we obtain a
sequence

X → E1(f ) → E2(f ) → · · · → Y.

Let us define Eω(f ) = colimk Ek(f ), where ω is used as the notation for the first limit
ordinal, so that we obtain a factorization

X → Eω(f ) → Y.
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By construction, every map Ek(f ) → Ek+1(f ) is contained in S because S is closed under
pushouts and coproducts. Hence, since S is saturated, the map X → Eω(f ) is also contained
in S. It remains to show that the map Eω(f ) → Y is contained in χR(S). For this purpose,
let us consider a map Ai → Bi in S and a diagram

Ai Eω(f )

Bi Y

where we wish to show the existence of the dashed arrow, which would make both triangles
commute. We now claim that the canonical map

colim
k∈N

HomsSet(Ai, E
k(f )) → HomsSet(Ai, E

ω(f ))

is a bijection. (In fact, such Ai are compact, i.e., HomsSet(Ai,−) commutes with general
filtered colimits.) This follows from the fact that there are only finitely many non-degenerate
simplices in Ai , and that any simplicial map is determined on the non-degenerate simplices.
Hence, we find a k ∈ N such that the given map Ai → Eω(f ) factors into a composition

Ai → Ek(f ) → Eω(f ).

Now the diagram

Ai Ek(f ) Eω(f )

Bi Y

commutes, and thus by the very definition of Ek+1(f ), there exists a commutative diagram

Ai Ek(f ) Eω(f )

Bi Ek+1(f ) Y

which solves our lifting problem. ��

Remark 1.3.10
The simplicial sets Ai for a small object argument in this book will have only finitely
many non-degenerate simplices. In general, we would have to find a regular cardinal
κ which is larger that the cardinality of any of the Ai’s appearing in S (which ensures

(continued)
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1.3.10 (continued)
that all Ai are indeed κ-compact). Moreover, we would have to define a saturated set to
be closed under colimits indexed over arbitrary ordinals, not just over the ordinal ω.
Then we could continue the above inductive process, namely considering pushouts for
successor ordinals as before, and taking a colimit for limit ordinals as before. At some
point, one would have defined Eκ(f ) which sits in a factorization X → Eκ(f ) → Y ,
and a similar argument as before would show that the first map is contained in S (with
the new definition of saturated sets) and that the latter map is contained in χR(S). We
chose to not deal with colimits over ordinals in this text, since we will not need it. But
it is of course useful to know that the small object argument does not depend on such
size issues.

Remark 1.3.11
The factorization as described above is functorial: Whenever given a commutative
diagram

X Y

X Y

f

f

then the small object argument in fact provides a commutative diagram

X Eω(f ) Y

X Eω(f ) Y

With the help of the small object argument, we can now give a proof of
Proposition 1.2.17. (Note that it is also possible to give a direct proof.)

Proposition 1.3.12
The saturated set generated by spine inclusions is not equal to the inner-anodyne maps.
Moreover, there exists a composer which is not an ∞-category.

Proof Consider the inclusion �3
1 → �3. By the small object argument, we can factor this

map into a composition

�3
1 → X → �3
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such that the first map is in the saturated class generated by the spine inclusions, and the
last map satisfies the RLP with respect to spine inclusions, and hence with respect to the
saturated set generated by the spine inclusions. It follows that X is a composer, because
the map �3 → �0 also has the RLP with respect to spine inclusions. If the saturated set
generated by the spine inclusions equaled the inner-anodyne maps, it would follow that the
map X → �3 is an inner fibration (since it has the RLP with respect to inner-anodyne maps).
We will show that this is not the case. For this purpose,

we claim that the lifting problem

3
1 X

3 3

does not have a solution. This is readily proved via induction over the filtration on X obtained
from the small object argument, using the following observation: Given a pushout

In A

n B

of simplicial sets with n ≥ 3, it follows that the image of �n
j ⊆ �n in B is not contained

in A.
If X is an ∞-category, then the map X → �3 would indeed be an inner fibration, see

Exercise 51. But we have shown that it is not. ��

Remark 1.3.13
The proposition also follows from a different argument: Combining Exercise 43 and
Lemma 1.2.70, we see that there exists a composer X which is not an ∞-category.
Now the map X → �0 is contained in χR({In → �n}n∈N), but it is not an inner
fibration. This shows that the saturated closure of the spine inclusions cannot be given
by the inner-anodyne maps, since otherwise any map that satisfies the RLP with respect
to the spine inclusions would also be an inner fibration.
Notice that the sheer fact that the saturated closure of the spine inclusions is not equal
to the inner-anodyne maps does not formally imply the existence of a composer which
is not an ∞-category. However, the converse holds: The existence of a composer which
is not an ∞-category shows that the saturated set generated by spine inclusions cannot
contain all inner-anodyne maps.
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Remark 1.3.14
We will show in Proposition 1.3.22 that spine inclusions are inner-anodyne, so that
Proposition 1.3.12 can be restated as saying that the saturated set generated by spine
inclusions is strictly contained in the inner-anodyne maps.

Lemma 1.3.15
Consider a set of morphisms S = {Ai → Bi}i∈I such that all Ai have only finitely
many non-degenerate simplices. Then the saturated closure S of S is given by χ(S).

Proof Obviously, we have S ⊆ χ(S). In Lemma 1.3.8, we have shown that χ(S) is itself
saturated, so we have S ⊆ χ(S). In order to prove the converse, consider a map f : x → y

with f ∈ χ(S). By the small object argument from Proposition 1.3.9, we find a factorization
of this map,

x z

y y

j

f p
α

where j ∈ S and p satisfies the RLP with respect to S. Since f ∈ χ(S), it follows that there
exists a dashed arrow α, which makes the diagram commute. Hence, we have a commutative
diagram

x x x

y z y

f j f

α p

which shows that f is a retract of j . Since j ∈ S, the same applies for f . ��

Corollary 1.3.16
(Inner-, left-, right-) anodyne maps are precisely the saturated closure of the (inner,
left, right) horn inclusions. In particular, all of these are monomorphisms.

As an extension of Fact 1.1.48, we also note the following fact.

Fact 1.3.17 A monomorphism is anodyne if and only if its geometric realization is a weak
equivalence. This is part of the existence of the Kan–Quillen model structure on simplicial
sets [GJ09, Theorem 11.3], which is equivalent to the Quillen model structure on topological
spaces.
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The following corollary is the relative version of Lemma 1.2.70.

Corollary 1.3.18
Let F : C → D be a morphism of simplicial categories. Assume that for all objects
X,Y ∈ C, the induced map HomC(X, Y ) → HomD(FX,FY) is a Kan fibration.
Then NF : NC → ND is an inner fibration.

Corollary 1.3.19
Let F : C → D be a functor between ordinary categories. Then the induced functor
NF : NC → ND is an inner fibration.

ProofGiven any map between sets A → B, then the induced map of constant simplicial sets
cA → cB is a Kan fibration. This follows from the fact that, for all n ≥ 1 and all 0 ≤ j ≤ n,
the map π0(�

n
j ) → π0(�

n) is an isomorphism. Then use the fact that N(C) = N(cC) and
the previous corollary to complete the proof. ��

Remark 1.3.20
In fact, more holds true: In Exercise 51, it is shown that a map of simplicial sets X →
N(D), where D is an ordinary category, is an inner fibration if and only if X is an
∞-category.

For what comes next, we have to recall the definition of the S-horn �n
S of

Definition 1.1.37, so that we have

�n
S =

⋃

s /∈S

�[n]\{s}.

Lemma 1.3.21
Let S ⊆ [n] be a non-empty subset. Then the map �n

S → �n is

(1) anodyne, provided that S �= [n],
(2) left-anodyne, provided that {n} /∈ S,
(3) right-anodyne, provided that {0} /∈ S,
(4) inner-anodyne, provided that S is not the complement of an interval, i.e., there are

a < b < c ∈ [n] with a, c /∈ S but b ∈ S.
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Proof Let S ⊆ [n] be a non-empty subset, let s ∈ S and let S′ = S \{s}. Consider the pushout
diagram

[n]\{s} ∩ n
S

[n]\{s}

n
S

n
S

n

Notice that the upper horizontal arrow is a generalized horn inclusion �
[n]\{s}
S′ ⊆ �[n]\{s}. It

follows that the inclusion �n
S → �n is contained in the smallest saturated set containing the

inclusions �
[n]\{s}
S′ ⊆ �[n]\{s} and �n

S′ ⊆ �n.

We will prove the lemma by induction over the size of S (for arbitrary [n]). Let us first
consider (1). If S contains only one element, say S = {i}, then �n

S is a horn inclusion,
and hence anodyne. If S contains more than one element, then S′ still contains at least one
element and is smaller than S, so that �n

S′ ⊆ �n and �
[n]\{s}
S′ ⊆ �n is anodyne by induction.

For (2), suppose that S = {i}. Then the horn inclusion is left-anodyne, because i �= n. If S

contains more than one element, then S′ is smaller and still does not contain n. The statement
for (3) is similar.

In order to show (4), we first note that if S = {i} then 0 < i < n, else its complement
is an interval, so that the inclusion �n

S → �n is inner-anodyne. If S contains more than one
element, then we claim that there exists an element s in S such that S \ {s} is again not the
complement of an interval: By assumption, there are a < b < c such that b ∈ S and a, c /∈ S;
and also by assumption, we have S �= {b}, so we can choose some other element s ∈ S \ {b}.
Then S′ = S \ {s} is again not the complement of an interval (because b ∈ S′). ��

Proposition 1.3.22
The spine inclusions In → �n are inner-anodyne.

Proof The spine inclusion in : In → �n can be factored as follows:

In fn−→ �[n]\{0} ∪ In gn−→ �n

We will show by induction on n that both fn and gn are inner-anodyne. The induction start
n = 1 and n = 2 is obvious. Now let n ≥ 3 and consider the pushout diagram

I [n]\{0} [n]\{0}

In [n]\{0} In
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where the upper composite is inner-anodyne by induction. Hence fn is inner-anodyne as a
pushout of an inner-anodyne map. It remains to show that gn is also inner-anodyne. In this
case, we consider the pushout diagram

[n]\{0,n} ∪ I [n]\{n} [n]\{n}

[n]\{0} In [n]\{0} [n]\{n} n

gn−1

where the upper horizontal map is inner-anodyne by induction. Therefore, the left lower
horizontal map is also inner-anodyne. The right lower horizontal map is given by �n

[n]\{0,n} ⊆
�n, which is inner-anodyne by Lemma 1.3.21, part (4), because {0, n} is not an interval. ��

Corollary 1.3.23
Every ∞-category is a composer.

ProofObvious from Proposition 1.3.22. ��

Definition 1.3.24
A trivial fibration is a map which has the RLP with respect to the boundary inclusions
∂�n → �n for n ≥ 0.

Definition 1.3.25
Let J be the nerve of the category consisting of two objects with a unique isomorphism
between them.

Observation 1.3.26
The category with two objects and a unique isomorphism between them is a classifier
for isomorphisms in a category. In other words, the functor corepresented by this
category is the functor which assigns to a category its set of isomorphisms.
Given a morphism f in an ∞-category X, one can thus wonder under what circum-
stances its classifying map �1 → X extends over J . It is easy to see that if this is
the case, then f is an equivalence (see Exercise 61). The converse turns out to be true
as well: It is yet another application of the fact that ∞-groupoids are Kan complexes.
(Note that the map �1 → J is anodyne.)



1.3 Anodyne Maps and Fibrations 69

Definition 1.3.27
A Joyal fibration between ∞-categories is an inner fibration which in addition has the
RLP with respect to the map �0 → J .

Construction 1.3.28 Let f : X → Y and i : A → B be maps of simplicial sets. Then there
is a commutative diagram

XB XA

YB YA

and therefore, there is an induced map

〈f, i〉 : XB → XA ×YA YB.

Construction 1.3.29 Dually, for morphisms i : A → B and g : S → T , we obtain a
commutative diagram

A × S A × T

B S B T

and therefore, there is an induced map

i � g : A × T �A×S B × S → B × T .

Lemma 1.3.30
The following two lifting problems are equivalent:

S XB A × T A×S B × S X

T XA
YA YB B T Y

Proof This follows immediately from spelling out all definitions and the universal properties
of pullbacks, pushouts, and the fact that the functor (−)A is a right adjoint of the functor
A × −. ��
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The crucial technical lemma about the maps i � g is the following.

Lemma 1.3.31
In the above notation, with i and g monomorphisms, we have that

(1) i � g is inner-anodyne if i or g is inner-anodyne;
(2) i � g is left-anodyne if i or g is left-anodyne,
(3) i � g is right-anodyne if i or g is right-anodyne,
(4) i � g is anodyne if i or g is anodyne.

In order to prove this lemma, we will need four preliminary steps in the form of
Lemma 1.3.32 to Lemma 1.3.35.

Lemma 1.3.32
Let S and T be two sets of morphisms whose domains are all compact. Then S � T ⊆
S � T ⊆ S � T . In particular, S � T = S � T = S � T .

Proof The very first inclusion is obvious. In order to see the second inclusion, we let F =
χR(S�T ). Then S � T = χL(F) by Lemma 1.3.15. Now consider the setA = {f : f �T ∈
χL(F)}. By Lemma 1.3.30 we have that

A = χL(〈F, T 〉),

thus A is a saturated set by Lemma 1.3.8. Since S ⊆ A by definition of A, it follows that
S ⊆ A. Thus S � T ⊆ S � T . Next, let us consider the set B = {f : S � f ∈ χL(F)}. As
before, we get that

B = χL(〈F, S〉)

so that B is also a saturated set. We see that T ⊆ B by the previous step, so that T ⊆ B
as well. This proves the first part. For the second part, we argue as follows: Since S � T is
saturated and contains S � T and S � T , we find that

S � T ⊆ S � T ⊆ S � T .

On the other hand, S � T ⊆ S � T ⊆ S � T , so the other inclusion holds as well. ��

Lemma 1.3.33
For 0 < j < n, the inclusion �n

j → �n is a retract of the map

�n
j × �2 ��n

j ×�2
1
�n × �2

1 → �n × �2.
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Proof For the first part, consider the maps

[n] s→ [n] × [2] r→ [n]

where

s(i) =

⎧
⎪⎪⎨

⎪⎪⎩

(i, 0) if i < j,

(i, 1) if i = j,

(i, 2) if i > j,

and where

r(i, k) =

⎧
⎪⎪⎨

⎪⎪⎩

i if i < j and k = 0,

i if i > j and k = 2,

j else.

We now have to show that

(1) rs = id,
(2) s(�n

j ) ⊆ �n
j × �2 ∪ �n × �2

1, and

(3) r(�n
j × �2 ∪ �n × �2

1) ⊆ �n
j .

(1) is an immediate check. In order to see (2), we observe that in fact s(�n
j ) ⊆ �n

j ×�2: For
this, it suffices to see that composing s with the projection [n] × [2] → [n] is the identity.
For (3), we need to show two things:

(a) r(�n
j × �2) ⊆ �n

j , and

(b) r(�n × �2
1) ⊆ �n

j .

In order to prove (a), consider a k-simplex of �n
j , i.e., f : [k] → [n] such that there exists an

m ∈ [n] \ j which is not in the image of f , and an arbitrary k-simplex α : [k] → [2] of �2.
Then the composite

[k] → [n] × [2] r→ [n]

is easily seen to send i ∈ [k] to either f (i) or j . Hence its image is contained in the image
of f ∪ {j}. In particular, m is not in the image of this composite, and thus represents a k-
simplex of �n

j . In order to see (b), consider again a general k-simplex β : [k] → [n] of �n

and a k-simplex f : [k] → [2] of �2
1, i.e., where either 0 or 2 is not in the image of f . For

the sake of definiteness, let us say that 2 is not in the image. (The other case works similarly.)
We find that the composite

[k] (β,f )−→ [n] × [2] r→ [n]
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sends i ∈ [k] to β(i) if β(i) < j and to j else. Thus the image is contained in {0, . . . , j}.
Now since 0 < j < n, we see that n is not in the image, so that the above composite
represents a k-simplex of �n

j . In the case that 0 is not in the image of f , we find that 0 is not
in the image by a similar argument. This proves the lemma. ��

The following lemma corresponds to [Lur09, Proposition 2.3.2.1].

Lemma 1.3.34
The following sets of morphisms all generate the set of inner-anodyne maps:

(1) the inner horn inclusions S1 = {�n
j → �n} for all n ≥ 2;

(2) the maps S2 = {(K → L) � (i : �2
1 → �2)} for all monomorphisms K → L;

(3) the maps S3 = {(∂�n → �n) � (i : �2
1 → �2)} for all n ≥ 0;

(4) the maps S4 = {(K → L)� (�n
j → �n)} for all monomorphisms K → L and all

inner horns.

Proof Let us first introduce some more notation by denoting the set of monomorphisms by
T2 and the set of boundary inclusions by T3. Hence, we have S2 = T2 � i, S3 = T3 � i,
and S4 = T2 � S1. In Exercise 59, it is shown that T2 = T3,. Therefore, it follows from
Lemma 1.3.32 that

S3 = T3 � i = T3 � i = T2 � i = T2 � i = S2.

Tautologically, we have that S2 ⊆ S4, since S2 ⊆ S4. We also find that S1 ⊆ S2 = T2 � i,
since any inner horn inclusion is a retract of a map in S2 by Lemma 1.3.33. Now notice that
T2 � T2 = T2, so that we additionally obtain

S4 = T2 � S1 ⊆ T2 � T2 � i = T2 � T2 � i = T2 � i = S2,

so that S2 = S4. The lemma is proved once we can show that S3 ⊆ S1, for which it suffices
to show that S3 ⊆ S1. For this purpose,

let m ≥ 0 and consider the inclusion

�m × �2
1 ∪ ∂�m × �2 ⊆ �m × �2.

If m = 0, then this map is given by �2
1 → �2 and thus is inner-anodyne. So let us assume

m ≥ 1. We will construct a filtration of �m × �2 as follows: For 0 ≤ i ≤ j < m, consider
the (m + 1)-simplices of �m × �2 given by

σi,j (k) =

⎧
⎪⎪⎨

⎪⎪⎩

(k, 0) if 0 ≤ k ≤ i,

(k − 1, 1) if i + 1 ≤ k ≤ j + 1,

(k − 1, 2) if j + 2 ≤ k ≤ m + 1.
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For 0 ≤ i ≤ j ≤ m, consider the (m + 2)-simplices of �m × �2 given by

τi,j (k) =

⎧
⎪⎪⎨

⎪⎪⎩

(k, 0) if 0 ≤ k ≤ i,

(k − 1, 1) if i + 1 ≤ k ≤ j + 1,

(k − 2, 2) if j + 2 ≤ k ≤ m + 2.

We observe that the non-degenerate k-simplices of �m×�2 correspond to paths of the length
k in the grid [m] × [2] which do not “take a break at any point”, i.e., they are precisely the
injective maps [k] → [m] × [2]. We claim that

(1) the simplices τi,j are the non-degenerate (m + 2)-simplices of �m × �2: Necessarily,
the paths corresponding to non-degenerate (m + 2)-simplices have to start at (0, 0) and
end at (m, 2) in order for an injective map [m + 2] → [m] × [2] to exist;

(2) the simplices σi,j are non-degenerate;
(3) the simplex σi,j is a face of τi,j and of τi,j+1 but of no other of the τ ’s which we just

constructed;
(4) the simplices σi,j and τi,j are not contained in �m × �2

1 ∪ ∂�m × �2.

(1) and (2) are obvious from the previous observation. (3) follows immediately from the
definitions, and (4) is also straightforward: The projection [m] × [2] → [m] sends the
simplices in question to surjections, so that they are not contained in ∂�m × �2; likewise,
the projection [m] × [2] → [2] sends the simplices in question to surjections as well, so that
they are not contained in �m × �2

1 either.
Let us now inductively define simplicial sets X(i, j) for 0 ≤ i ≤ j < m as follows:

X(0, 0) = �m × �2
1 ∪ ∂�m × �2

For fixed j , we inductively define, for i ≤ j < m,

X(i + 1, j) = X(i, j) ∪ σi,j ,

and we set

X(0, j + 1) = X(j + 1, j).

Then we define Y(0, 0) = X(0,m), again inductively define, for i ≤ j ≤ m,

Y(i + 1, j) = Y(i, j) ∪ τi,j ,

and set

Y(0, j + 1) = Y(j + 1, j).
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Since the τi,j are the non-degenerate (m + 2)-simplices of �m × �2, we find that Y(0,m +
1) = �m × �2. In order to complete the proof of the lemma, we have to show the following
statements:

(A) The simplicial set X(i, j) ∩ σi,j is an inner horn.
(B) The simplicial set Y(i, j) ∩ τi,j is an inner horn.

From this, it follows that all maps X(i, j) → X(i +1, j) and all maps Y(i, j) → Y(i +1, j)

are inner-anodyne: In either case, they are pushouts of inner horn inclusions, which is why
their composite X(0, 0) → Y(0,m+1) is also inner-anodyne, which concludes the lemma.

• Proof of (A): W e have to prove that for all 0 ≤ i ≤ j < m, the map

[m + 1] σi,j−→ [m] × [2]

sends all m-dimensional faces to X(i, j), except for one inner m-dimensional face. We
claim that the (i + 1)-face of σi,j is the one which is not contained in X(i, j). Notice that
0 < i +1 < m+1, so that σi,j ∩X(i, j) is an inner horn. There are only two faces of σi,j

which do not lie in ∂�m ×�2 ⊆ X(0, 0), namely the ones which compose the horizontal
edges adjacent to the unique vertical edge. These are diσi,j and di+1σi,j , therefore it
suffices to check that diσi,j is contained in X(i, j) and that di+1σi,j is not contained
in X(i, j). The former statement is readily seen by observing that diσi−1,j = diσi,j ,
provided that i > 0 and that d0σ0,j is contained in �m × �2

1, since 0 is not in the image
after projecting to [2]. It remains to prove the latter statement, namely that di+1σi,j is not
contained in X(i, j). We have already seen that di+1σi,j is not contained in ∂�m × �2.
Hence, we need to show that

(1) di+1σi,j is not contained in �m × �2
1,

(2) di+1σi,j is not contained in σk,j for k < i, and
(3) di+1σi,j is not contained in σk,l for k ≤ l < j .

(1) follows from the fact that 0 < i + 1 < m + 1, i.e., after projecting [m] × [2] → [2],
0 and 2 are in the image of di+1σi,j . For (2), we observe that the path corresponding to
di+1σi,j runs through the spot (i, 0), which is not the case for σk,j with k < i, and hence
not for any face of it either. Likewise, if i < j then di+1σi,j runs through the spot (j, 1),
which is not the case for any σk,l with l < j . If i = j , then di+1σi,j runs again through
(i, 0), which is not the case for σk,l with k ≤ l < j = i, so that k < i as in the first case.

• Proof of (B): Again, we claim that di+1τi,j is the only face which is not contained in
Y(i, j).

(a) We first consider the case i < j .
Observe again that d�τi,j is contained in ∂�m ×�2 unless � ∈ {i, i +1, j +1, j +2},
and that dj+1τi,j = σi,j−1 and dj+2τi,j = σi,j , so that both are contained in Y(i, j).
Likewise, if i > 0, then diτi,j = diτi−1,j , so that this face is also contained in Y(i, j).
If i = 0, then diτi,j is contained in �m ∪ �2

1, since its projection to [2] does not have
0 in its image. We now show that di+1τi,j is not contained in Y(i, j), which implies
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that Y(i, j) ∩ τi,j is again an inner horn (since 0 < i + 1 < m + 2). As in case (A),
we need to see that
(1) di+1τi,j is not contained in τk,j for k < i, and
(2) di+1τi,j is not contained in τk,l for k ≤ l < j .
As before, di+1τi,j runs through the spot (i, 0), which is not the case for τk,j if k < i.
Likewise, di+1τi,j runs through the spot (j, 1), which is not the case for τk,l if l < j .

(b) Finally, we consider the case i = j . We claim that di+1τi,i is again the only face
which is not contained in Y(i, i). If i = j = 0, then d0τ0,0 is contained in �m × �2

1,
because its projection to [2] misses 0. If i > 0, then we have that diτi,i = diτi−1,i

so diτi,i is contained in Y(i, i) in all cases. Likewise, we have that di+2τi,i = σi,i . If
l < i or l > i + 2, then the projection of dlτi,i to [m] is not surjective and thus dlτi,i

is contained in ∂�m × �2. It remains to show that
(1) di+1τi,i is not contained in τk,j for k < i, and
(2) di+1τi,i is not contained in τk,l for k ≤ l < j .
Note that k < i in both cases and that di+1τi,i runs through the spot (i, 0). But τk,l

does not run through (i, 0), no matter what l is.

��

Lemma 1.3.35
The following sets of morphisms all generate the set of left-anodyne maps:

(1) the left horn inclusions S1 = {�n
j → �n} for all n ≥ 1 and 0 ≤ j < n;

(2) the maps S2 = {(K → L) � (i : {0} → �1)} for all monomorphisms K → L;
(3) the maps S3 = {(∂�n → �n) � (i : {0} → �1)} for all n ≥ 0;
(4) the maps S4 = {(K → L) � (�n

j → �n)} for all monomorphisms K → L, all
n ≥ 1 and 0 ≤ j < n.

Proof As in the proof of Lemma 1.3.34, only the following two statements do not follow
from previous considerations:

(1) The maps in S3 are left-anodyne.
(2) The map �n

j → �n is a retract of the pushout product map

�n × {0} ��n
j ×{0} �n

j × �1 → �n × �1.

Both statements are included in Exercise 62. Here, we give the following hints: For (1),
consider a similar filtration of �n × �1 starting with the domain of the pushout product by
adding the missing non-degenerate (n + 1)-simplices in �n × �1, and then run the same
argument as in Lemma 1.3.34. For (2), consider the maps

[n] s→ [n] × [1] r→ [n],
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where s is the inclusion k �→ (k, 1) and

r(k, i) =

⎧
⎪⎪⎨

⎪⎪⎩

k if k �= j + 1 and i = 0,

j if (k, i) = (j + 1, 0),

k if i = 1.

��

Corollary 1.3.36
The following sets of morphisms all generate the set of right-anodyne maps:

(1) the right horn inclusions S1 = {�n
j → �n} for all n ≥ 1 and 0 < j ≤ n;

(2) the maps S2 = {(K → L) � (i : {1} → �1)} for all monomorphisms K → L;
(3) the maps S3 = {(∂�n → �n) � (i : {1} → �1)} for all n ≥ 0;
(4) the maps S4 = {(K → L) � (�n

j → �n)} for all monomorphisms K → L, all
n ≥ 1 and 0 < j ≤ n.

Proof We observe that a map is right-anodyne if and only if its opposite if left-anodyne,
because a map is a left fibration if and only if its opposite is a right fibration according to
Exercise 51. Then the first part follows from the fact that (�n

j )
op ∼= �n

n−j and that all other
morphisms of the involved simplicial sets are “self-opposite”. ��

Proof of Lemma 1.3.31 Part (1) follows from the equality S4 = S1 of Lemma 1.3.34, Part
(2) follows from the equality S4 = S1 of Lemma 1.3.35, and Part (3) follows from the
equality S4 = S1 of Corollary 1.3.36. In order to see Part (4), we simply observe that
anodyne maps are generated (as a saturated set) by left- and right-anodyne maps. Hence,
it suffices to show that for i being a left-anodyne (respectively right-anodyne) map and g

being a monomorphism, i � g is anodyne. Since left-anodyne (respectively right-anodyne)
maps are anodyne, this follows from statement (2) and (3), respectively. ��

Theorem 1.3.37
Let f : X → Y be a (inner, left, right) fibration and let i : A → B be a monomorphism.
Then

(1) the map 〈f, i〉 is a (inner, left, right) fibration.
(2) If additionally i is (inner-, left-, right-) anodyne, then the map 〈f, i〉 is a trivial

fibration.
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ProofWe prove (1) first. For this purpose, consider a lifting problem

S XB

T XA
YA YB

g f,i

where the map g : S → T is (inner-, left-, right-) anodyne. By Lemma 1.3.30, solving this
problem is equivalent to solving the lifting problem

A× T A×S B × S X

B T Y

i g f

By Lemma 1.3.31, we know that i � g is (inner-, left-, right-) anodyne, and by assumption f

is an (inner, right, left) fibration.
In order to prove (2), we need to consider again a lifting problem as above, where now g

is a monomorphism. Since i is (inner-, left-, right-) anodyne, we see again that we can solve
this lifting problem by Lemma 1.3.31. ��

Corollary 1.3.38
Let K and X be simplicial sets. If X is an ∞-category, then so is XK . If X is a Kan
complex, then so is XK .

Proof This is a special case of Theorem 1.3.37, part (1), where A is empty, B = K and
Y = �0. ��

Definition 1.3.39
Let C and D be ∞-categories. We define the ∞-category of functors from C to D by
Fun(C,D) = Hom(C,D). It is an ∞-category due to Corollary 1.3.38.

Observation 1.3.40
Notice again that the 0- and 1-simplices of Fun(C,D) are functors and natural
transformations as defined in Definition 1.2.16 and Definition 1.2.79.
If additionally D is a Kan complex, then Fun(C,D) is itself a Kan complex and
hence an ∞-groupoid in particular. This, together with the (to be proven) fact that ∞-
groupoids are Kan complexes, suggests that in the functor category, a morphism which
is pointwise an equivalence is in fact an equivalence. This will turn out to be true, but

(continued)
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1.3.40 (continued)
even more complicated to prove then showing that Kan complexes are precisely the
∞-groupoids, see Theorem 2.2.1.

We are now in the position to give a new definition of the ∞-category of spaces,
which is purely simplicial.

Definition 1.3.41
We consider the simplicial category Kan with objects given by Kan complexes X and with
hom-simplicial sets from X to Y given by the internal hom-simplicial set Hom(X, Y ). We
let Ŝpc = N(Kan) be its coherent nerve.

Observation 1.3.42
There is a canonical functor Spc → Ŝpc. For the construction of this simplicial functor,
recall that Spc is the coherent nerve of the simplicial category of CW-complexes as
in Definition 1.2.72. We claim that sending a CW-complex X to its singular complex
S(X) induces the required simplicial functor. For this, we need to show that there is a
canonical map of simplicial sets

S(map(X, Y )) → Hom(S(X),S(Y ))

which is compatible with composition. This map is constructed as follows: By
adjunction it suffices to construct a map

S(map(X, Y )) × S(X) → S(Y ).

Using that S (as a right adjoint) commutes with products, this is equivalently provided
by a canonical map

S(map(X, Y ) × X) → S(Y ).

Now we use the continuous evaluation map map(X, Y ) × X → Y and apply the
functor S to it. It is not hard to see that the map obtained in this way is compatible
with composition, and hence determines a functor Spc → Ŝpc as claimed.

Observation 1.3.43
Furthermore, we claim that the map

S(map(X, Y )) → Hom(S(X),S(Y ))

(continued)
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1.3.43 (continued)
is a weak equivalence, so that the simplicial functor from CW-complexes to Kan
complexes is a weak equivalence in the sense of Definition 1.2.49. At a later stage,
we will prove that weak equivalences of Kan enriched simplicial categories induce
equivalences of ∞-categories upon applying the coherent nerve, so that both ∞-
categories of spaces which we have defined are in fact equivalent.

Corollary 1.3.44
A simplicial set C is an ∞-category if and only if the canonical map C�2 → C�2

1 is
a trivial fibration. In particular, for an ∞-category C the fibre over a fixed diagram
�2

1 → C is a contractible Kan complex.

Proof The “only if” part follows from the fact that �2
1 → �2 is inner-anodyne, C → ∗ is

an inner fibration, and Theorem 1.3.37. In order to see the converse, we wish to show that
C → ∗ is an inner fibration if C�2 → C�2

1 is a trivial fibration.
For showing that C → ∗ is an inner fibration, by Lemma 1.3.34 it suffices to show that

it admits the extension property for maps in S2. By adjunction, this holds if and only if
C�2 → C�2

1 satisfies the extension property for all monomorphisms, which is the case if and
only if it is a trivial fibration.

For the “in particular” part, consider two composable morphisms f and g in C, and view
them as a map �2

1 → C. Then in the pullback diagram

the right vertical map is a trivial fibration, therefore the left vertical map is a trivial fibration
as well. In particular, for any two composable morphisms, the simplicial set CompC(f, g) of
compositions is a contractible Kan complex. ��

Remark 1.3.45
The same line of arguments shows that for an ∞-category C, the map C�n → CI n

is a
trivial fibration for all n ≥ 2, because the maps In → �n are inner-anodyne.
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Lemma 1.3.46
Any trivial fibration X → Y admits a section, and the collection of these sections
assembles into a contractible Kan complex.

Proof For any simplicial set A, the map Hom(A,X) → Hom(A, Y ) is again a trivial
fibration. In particular, this is the case for A = Y . Then the fibre over idY is a contractible
Kan complex whose zero-simplices are sections of p. ��

Due to the previous lemma, we can choose a section of the above trivial fibration
and obtain the composite

C�2
1 → C�2 → C�{0,2}

as functors of ∞-categories (i.e., maps of simplicial sets). Since the first category is
equivalent to C�1 ×CC

�1
, where the maps are target and source, we obtain a functor

which encodes composition in the ∞-category C:

C�1 ×C C�1 → C�1

Definition 1.3.47
Let C be an ∞-category and let x, y ∈ C be objects. Then we define the mapping ∞-
category between x and y to be the pullback

where the right vertical map is source and target (i.e., evaluation at 0 and 1).

Notice that it is easy to see that mapC(x, y) is an ∞-category, since the map
Fun(�1,C) → C × C is an inner fibration by Theorem 1.3.37. In fact, more is true,
but we have to defer the proof of the following proposition to a later stage of the
book, see Corollary 2.2.4.

Proposition 1.3.48
If C is an ∞-category, then for all objects x, y ∈ C, mapC(x, y) is an ∞-groupoid.
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Therefore, we obtain a functor

mapC(x, y) × mapC(y, z) → Fun(�1,C) ×C Fun(�1,C) → Fun(�1,C)

which makes the diagram

commute. We hence obtain a functor

mapC(x, y) × mapC(y, z) → mapC(x, z)

which we refer to as the composition in the ∞-category C.

1.4 Joins and Slices

In this section, we discuss a construction in simplicial sets which mimics the notion
of joins and slices in ordinary category theory. The section is of a similar technical
flavour as the previous section, although it is of notably less technical effort. The
tools developed here are a central building block for the proof of Joyal’s lifting
theorem which we will discuss in the next chapter.

Definition 1.4.1
Let C and D be categories. Then the join C � D is given by the following category:

Ob(C � D) = Ob(C) � Ob(D)

Hom-sets in this category are given by

HomC�D(x, y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

HomC(x, y) if x, y ∈ C,

HomD(x, y) if x, y ∈ D,

∗ if x ∈ C, y ∈ D,

∅ if x ∈ D, y ∈ C.

Remark 1.4.2
Notice that the join is not symmetric.
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Definition 1.4.3
Let C be a category, and let x ∈ C be an object. Then there are categories C/x and Cx/

of objects over and under x, called slice categories. Objects are given by morphisms
y → x for C/x and x → y for Cx/. Morphisms between two such objects are given by
commutative triangles.

Remark 1.4.4
If C is a cocomplete category and x an object of C, then the slice Cx/ of objects under
x is again cocomplete. However, the forgetful functor Cx/ → C does not preserve all
colimits, see Lemma 1.4.14.

Definition 1.4.5
Given a linearly ordered set J , we define the set of cuts of J , denoted by Cut(J ), as
decompositions of J = J1 � J2 into two disjoint pieces J1 and J2 such that x < y

whenever x ∈ J1 and y ∈ J2. The half-empty cuts (∅, J ) and (J,∅) are allowed.

Lemma 1.4.6
Given linearly ordered sets J and J ′ with a map α : J → J ′, and given (J ′

1, J
′
2) ∈

Cut(J ′), then there exists a unique cut (J1, J2) ∈ Cut(J ) such that α restricts to maps
α1 : J1 → J ′

1 and α2 : J2 → J ′
2.

ProofWe need to define Ji = α−1(J ′
i ). The only thing to check is that this is in fact a cut of

J . But this follows from the fact that α preserves the order. ��

Observation 1.4.7
This result implies that Cut(−) is a contravariant functor from linearly ordered sets to
sets. In fact, Cut(−) is representable by [1].

Definition 1.4.8
Let X and Y be simplicial sets. We define their join X � Y to be the simplicial set given
as follows: For a finite linearly ordered set J , we set

(X � Y)(J ) =
∐

(J1,J2)∈Cut(J )

X(J1) × Y(J2)
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where we declare that X(∅) = ∗ = Y(∅). Let α : J → J ′ be a morphism of linearly
ordered sets and consider a cut of J ′. Then for the associated cut of J as in Lemma 1.4.6,
there is a map

X(J ′
1) × Y(J ′

2) → X(J1) × Y(J2).

This provides a unique map

(X � Y)(J ′) → (X � Y)(J )

which restricts to the above map on each cut of J ′, making X � Y a simplicial set.

ExampleGiven two ordinary categories C andD, we have

N(C � D) ∼= N(C) � N(D).

In particular, �n � �m = �n+1+m holds. In order to prove this claim, we construct
a map of simplicial sets

N(C � D) → N(C) � N(D)

by observing that any n-simplex in N(C�D) determines a cut of [n]: At some point,
one jumps from morphisms in C to morphisms in D. It is easy to see that this map
is an isomorphism.

Lemma 1.4.9
Given a simplicial set X, the join construction determines a functor X � −: sSet →
sSetX/. Likewise, it yields a functor − � X : sSet → sSetX/.

ProofWe need to show that for every Y ∈ sSet, the simplicial set X � Y is equipped with a
map X → X � Y . This is obviously the case by the right half-empty cut inclusion

X(J) × Y(∅) ⊆
∐

(J1,J2)∈Cut(J )

X(J1) × Y(J2) = (X � Y)(J ).

Furthermore, given a morphism Y → Y ′ of simplicial sets, we immediately see that the
canonical diagram

commutes, and functoriality is also obvious. ��
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Lemma 1.4.10
Let K be a simplicial set equipped with a map p : K → �1. Then there is a functorial
factorization into a composite

K → K0 � K1
c→ �1,

where Ki = p−1(i) and the map c is the map K0 � K1 → �0 � �0 ∼= �1.

ProofWe need to construct the map K → K0 � K1. For any n ≥ 0, we have that

HomsSet(�
n,�1) = Hom([n], [1]) = Cut([n]).

Thus, for every n-simplex x : �n → K , the composite px : �n → K → �1 determines a
cut ([i], [j ]) ∈ Cut([n]), so that the map px : [n] → [1] sends the first i points to 0 and the
rest to 1. By definition, this determines a point of K0([i])×K1([j ]) which in turn determines
an n-simplex of K0 � K1.

It is then easy to see that this in fact determines a map of simplicial sets K → K0 � K1

and that this construction is functorial in sSet/�1 . Concretely, for a commutative triangle

1

K

the induced diagram

K K0 1
1

K K0 1

commutes as well. ��

Corollary 1.4.11
Given a map ϕ : K → X � Y over �1, i.e., a morphism in sSet/�1 , there is a

factorization into K → K0 � K1
f �g−→ X � Y .
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ProofWe observe that the factorization provided by Lemma 1.4.10 for the map X �Y → �1

is given by X � Y → X � Y → �1. Since this factorization is functorial, we obtain a
commutative diagram

K0 1

ϕ

∼=

from which the claim follows. ��

Proposition 1.4.12
X and Y are ∞-categories if and only if X � Y is an ∞-category.

Proof Consider a map

�n
j → X � Y

for n ≥ 2 and 0 < j < n. We want to show that this map extends over �n. We can post-
compose the map with the canonical map X � Y → �1 and obtain a factorization

�n
j → (�n

j )0 � (�n
j )1 → X � Y.

There are several possibilities for what the first map is. First recall that any map �n
j → �1

factors uniquely over �n (since �1 is the nerve of a category and �n
j is an inner horn). There

are three cases to be considered:

(1) The map �n
j → �1 is constant at 0.

(2) The map �n
j → �1 is constant at 1.

(3) The map �n
j → �1 is not constant.

In the first case, we find that the map �n
j → X � Y factors through X → X � Y and can

therefore be extended over �n if and only if X is an ∞-category: If an extension of the
composite

�n
j → X → X � Y

to �n exists, then the composite �n → X � Y → �1 is constant at 0, so that the map
�n → X � Y in fact factors through the inclusion X → X � Y . Similarly, in the second case
we find that the map �n

j → X � Y factors through Y → X � Y , and thus can be extended
over �n if and only if Y is an ∞-category.
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Lastly, let us consider the case where the map �n
j → �1 is not constant. Observe that

this map factors uniquely through a non-constant map �n → �1. The non-constant maps
correspond precisely to the non-half-empty cuts of [n], so there is a 0 ≤ k < n such that
the map �n → �1 is isomorphic to the canonical map �k � �� → �1. It follows that
(�n

j )0 consists of all those m-simplices of �n
j which are represented by maps [m] → [n]

whose image is contained in {0, . . . , k} (so that it lies in the fibre over 0) and such that
there exists a number different from j which is not in the image of [m] → [n] (so that
it lies in the horn). Since k < n, we can be sure that n does not lie in the image of
the map [m] → [n] representing an m-simplex of (�n

j )0. In other words, we find that

(�n
j )0

∼= �k . Likewise, we find that (�n
j )1

∼= ��. The factorization of Corollary 1.4.11
hence reads as

�n
j → �k � �� → X � Y,

which is the desired extension. The proof of the proposition easily follows. ��

Now, we come to the construction of slice categories of ∞-categories. For this,
we observe that if the functor S �−: sSet → sSetS/ admits a right adjoint sSetS/ →
sSet,

(p : S → X) �→ Xp/,

then we obtain that a map from Y → Xp/ is the same thing as a map S � Y → X in
sSetS/. Specializing this result to Y = �n, we obtain a simplicial set.

Definition 1.4.13
For p : S → X, the association n �→ HomsSetS/

(S � �n,X) determines a simplicial set
which we call Xp/.

Lemma 1.4.14
If an ordinary category C is (co)complete and x ∈ C is an object, then Cx/ and C/x

are (co)complete as well. The forgetful map Cx/ → C preserves limits and connected
colimits (i.e., colimits indexed over connected categories), and the forgetful map C/x →
C preserves colimits and connected limits as well.

ProofWe first observe that C/x
∼= (C

op
x/)

op, therefore it suffices to treat the case of colimits.
First, we show that the forgetful map C/x → C preserves colimits. For this purpose, consider
a diagram F : I → C/x . The colimit of the underlying diagram I → C/x → C canonically
comes with a map to x, and it is easy to see that this produces a colimit of F .
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The case of colimits of a diagram F : I → Cx/ is slightly more complicated. Note that any
such diagram is equivalently given by a diagram G : I� → C whose restriction to the cone
point is given by the object x. We observe that there are canonical functors �0 → I� ← I

which are inclusions. In particular, we have a canonical map

x = colim
�0

G|�0 → colim
I � G.

We claim that this morphism is a colimit of F . For the proof of this claim, suppose that a
functor F̄ : I� → C/x is given, i.e., a compatible family of maps F(i) → (x → y) in Cx/.
We wish to show that there exists a unique map

colim
I � G → y

which is compatible with both maps from x. But this becomes clear from the observation
that G|I = F , so that for i ∈ I , there is a canonical map G(i) = F(i) → y, and for the
cone point, we have G(∗) = x, so that there is a canonical map to y as well. These are
compatible since F takes values in the slice Cx/. This shows that F admits a colimit, namely
the above-mentioned map

x → colim
I � G.

To finish the proof of the lemma, we need to show that if I is connected, then the canonical
map

colim
I

F → colim
I � G

is an isomorphism, so that the functor Cx/ → C preserves connected colimits. We first
construct a canonical map in the other direction, for which it is sufficient to construct a
map G(j) → colim

I
F for j ∈ I�, compatible in j . If j ∈ I , then G(j) = F(j), so that there

is a canonical map to colim
I

F . Therefore, we need to construct a map x = G(∗) → colim
I

F .

For this, we choose any object i ∈ I and get a map

x = G(∗) → G(i) = F(i) → colim
I

F

as wanted. Next, we need to show that these maps assemble into a map

colim
I � G → colim

I
F.

In other words, we need to show that for any morphism in I�, the corresponding triangle
commutes. For this, it suffices to treat morphisms of the form ∗ → j for some j ∈ I . (For
morphisms in I , it holds by construction.) Concretely, we need to show that for any two
objects i, j ∈ I , the two maps

x = G(∗) → G(i) = F(i) → colim
I

F
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and

x = G(∗) → G(j) = F(j) → colim
I

F

are the same maps. This is were the assumption that I is connected enters: Namely, we can
find a sequence of morphisms connecting i to j in I . By induction on the length, we may
assume that the length is one, so that there is in fact a map i → j in I . In this case, it follows
from the property of colimits that the triangle

F(i) colim
I

F

F(j)

commutes. On the other hand, by assumption on F , the triangle

x F(i)

F (j)

also commutes, so that the claim is shown.
By construction, the composite

colim
I

F → colim
I � G → colim

I
F

is the identity. The other composite provides a map

colim
I � G → colim

I
F → colim

I � G

whose restriction to G(j) → colim
I � G for j ∈ I is the canonical map, and whose restriction

to the cone point is given by x → G(i) → colim
I � G. This map is the canonical map G(∗) →

colim
I � G, so that the above composite is also the identity. ��

Lemma 1.4.15
The functors S � − and − � S : sSet → sSetS/ preserve colimits.

Proof It suffices to check that the functors preserve coequalizers, which are calculated in
sSet by Lemma 1.4.14, and that they preserve coproducts. For the latter, we recall that the
coproduct (S → A) � (S → B) in sSetS/ is given by the canonical map to the pushout
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S → A �S B in sSet (see again Lemma 1.4.14 for the description of colimits in such slices).
Then we observe that

(S ∗ (
∐

i∈I

Ai))n = Sn �
∐

i∈I

(Ai)n �
∐

k+l=n−1

Sk ×
∐

i∈I

(Ai)l,

whereas

∐

i∈I

(S ∗ Ai)n =
∐

i∈I

(
Sn � (Ai)n �

∐

k+l=n−1

Sk × (Ai)l

)
/ ∼

where the relation identifies
∐

I Sn with Sn. For coequalizers, the statement follows similarly
from the explicit description of the simplices of the join. ��

Corollary 1.4.16
The functors S � − and − � S : sSet → sSet preserve pushouts.

Proof The functors S � − and − � S : sSet → sSetS/ preserve all colimits by Lemma 1.4.15
and the forgetful functor sSetS/ → sSet preserves connected colimits by Lemma 1.4.14.
Since pushouts are connected colimits, the claim follows. ��

Corollary 1.4.17
The functor (p : S → X) �→ Xp/ is right-adjoint to S � −: sSet → sSetS/. Likewise,
the functor (p : S → X) �→ X/p is right-adjoint to − � S : sSet → sSetS/.

Proof By definition, the adjunction property holds for representables. By Lemma 1.4.15, the
functors S � − and − � S preserve colimits, so that the adjunction bijection extends from
representables to all simplicial sets. ��

Example Let C be an ∞-category and x ∈ C an object, which we view as a functor
x : �0 → C. We obtain slices Cx/ and C/x . For a general simplicial set K , we will
write K� = �0 �K and K� = K ��0 and call these constructions cone and cocone
over K .

Observation 1.4.18
Let us explicitly spell out the unit and counit of the slice/join adjunction. For a fixed
simplicial set S, the counit of the adjunction is given by a natural map as follows: Let

(continued)



90 1 Categories, Simplicial Sets, and Infinity-Categories

1.4.18 (continued)
p : S → X be an object of sSetS/, so we obtain the slice Xp/. Then the counit is the
map S � Xp/ → X in sSetS/ given by

Sn � HomsSetS/ (S � �n,X) �
∐

k+l=n−1

Sk × HomsSetS/ (S � �l,X) → Xn,

which is given by p in the first component, induced by precomposition with �n →
S��n on the second component, and induced by precomposition with�k��l → S��l

for each k-simplex of S on the last component.
Likewise, the unit is the map X → (S �X)can/, where can : S → S �X is the canonical
map. It is given by joining an n-simplex of X with S, which yields a map

Xn
∼= HomsSet(�

n,X) → HomsSetS/ (S � �n, S � X).

Definition 1.4.19
Let C be an ordinary category. We define a new category Tw(C), the twisted arrow
category of C, as follows: Objects are the morphisms of C, and a morphism in Tw(C)

from f ′ : x′ → y′ to f : x → y is given by a commutative diagram

x y

x y

f

α

f

β

We also write that the pair (α, β) is a morphism from f ′ to f = βf ′α. Composition is
obtained by glueing such diagrams together.

Lemma 1.4.20
The slice construction induces a functor Tw(sSet) → sSet. In particular, for

A
i→ B

ϕ→ X
f→ Y

there is an induced map

Xϕ/ → Xϕi/ ×Yfϕi/ Yf ϕ/.

The same holds true for the other slice.



1.4 Joins and Slices 91

Proof The objects of Tw(sSet) are given by maps p : S → X of simplicial sets, and such an
object is sent to X/p. We need to show how this is functorial in morphisms of the twisted
arrow category, i.e., we need to produce a canonical map

Xϕ/ → Yfϕi/,

since the pair (i, f ) is a morphism from ϕ to f ϕi in Tw(sSet).
First, we construct maps Xϕ/ → Xϕi/ and Xϕ/ → Yfϕ/ which correspond to the

morphisms

A X B Y

B X B X

ϕi

i

f ϕ

ϕ ϕ

f

in Tw(sSet). Using those constructions, we similarly obtain maps

Xϕi/ → Yfϕi/ ← Yfϕ/,

and we will then show that the diagram

Xϕ/ Yf ϕ/

Xϕi/ Yf ϕi/

commutes. This is already part of functoriality in the twisted arrow category, because the pair
(i, f ) satisfies

(i, id) ◦ (id, f ) = (i, f ) = (id, f ) ◦ (i, id),

as the following diagrams show:

A Y A Y

A X B Y

B X B X

fϕi

i

f ϕi

ϕi

i

f

f ϕ

ϕ ϕ

f
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The map Xϕ/ → Xϕi/ is adjoint to a map A � Xϕ/ → X under A, which we define as the
canonical composite

A � Xϕ/ → B � Xϕ/ → X

consisting of the map induced by i and the counit of the adjunction. Likewise, the map
Xϕ/ → Yfϕ/ is adjoint to a map B � Xϕ/ → Y under B, which we define as the composite

B � Xϕ/ → X → Y

consisting of the counit, followed by f . In order
to see that the diagram

Xϕ/ Yf ϕ/

Xϕi/ Yf ϕi/

commutes, we observe that both composites are adjoint to the map

A � Xϕ/ → B � Xϕ/ → X → Y.

It is then easy to see that this construction is functorial in Tw(sSet). For the other slice, the
argument is similar. ��

Lemma 1.4.21
The slice/join adjunction induces a bijection of lifting problems between diagrams of
the kind

S Xϕ/

T Xϕi/ ×Yfϕi/ Yf ϕ/

and diagrams of the kind

ϕ
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Proof Exercise 70. ��

An analogue of Lemma 1.3.31 and Theorem 1.3.37 holds for joins and slices
instead of product- and hom-simplicial sets.

Lemma 1.4.22
Let i : A → B and g : S → T be monomorphisms. Then the induced map

i�̂g : A � T �A�S B � S → B � T

is a monomorphism. In addition,

(1) it is inner-anodyne if i is right-anodyne or g is left-anodyne;
(2) it is left-anodyne if i is left-anodyne;
(3) it is right-anodyne if g is right-anodyne.

Proof For (1), let us prove the case where i is right-anodyne. We claim that the set which
contains all monomorphisms i : A → B such that the map i�̂g is inner-anodyne (for
any monomorphism g : S → T ) is a saturated class: This is because it is the set of all
monomorphisms which has the LLP with respect to morphisms of the form

Xϕ/ → Xϕi/ ×Yf ϕi/ Yf ϕ/

for an inner fibration f : X → Y and an arbitrary map ϕ : T → X. It hence suffices to show
that the horn inclusions �n

j → �n for 0 < j ≤ n are in this set. We leave it as an exercise
to see that the set of monomorphisms g : S → T such that the map (�n

j → �n)�̂g is inner-
anodyne is also a saturated set. It hence suffices to discuss the case of g being the boundary
inclusions ∂�m → �m. In this case, we have to check that

�n
j � �m ∪ �n � ∂�m → �n � �m

is inner-anodyne. But this follows from Exercise 71, which shows that the former is given by
�n+1+m

j , which is now an inner horn because of j ≤ n < n + 1 + m.
The case where g is left-anodyne follows from a similar calculation, based on the fact that

∂�m � �n ∪ �m � �n
j → �m+1+n

is isomorphic to the inclusion �m+1+n
m+1+j → �m+1+n and 0 ≤ j < n, so that this is again an

inner horn.
Let us now prove (2). Using the same reduction arguments as before, it suffices to treat

the case where i : �n
j → �n with 0 ≤ j < n and g : ∂�m → �m is the boundary inclusion.

Then we get, as before, that the map i�̂g is given by �n+1+m
j → �n+1+m with 0 ≤ j < n,

which is clearly a left-anodyne map. The case (3) is similar. ��
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Theorem 1.4.23
Let A

i→ B
ϕ→ X

f→ Y be composable maps and assume that i is a monomorphism
and that f is an inner fibration.

(1) The induced map

Xϕ/ → Xϕi/ ×Yf ϕi/ Yf ϕ/

is a left fibration.
(2) If the map f : X → Y is a left fibration, then the induced map

X/ϕ → X/ϕi ×Y/f ϕi Y/f ϕ

is a left fibration.
(3) If the map i : A → B is right-anodyne, then the map

Xϕ/ → Xϕi/ ×Yf ϕi/ Yf ϕ/

is a trivial fibration.
(4) If the map f : X → Y is a trivial fibration, then the map

Xϕ/ → Xϕi/ ×Yf ϕi/ Yf ϕ/

is a trivial fibration.

ProofAgain we consider a general lifting problem

S Xϕ/

T Xϕi/ ×Yf ϕi/ Yf ϕ/

This lifting problem is equivalent (by Lemma 1.4.21, or rather by Exercise 70) to the
following lifting problem:

ϕ
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In order to prove (1), we thus need to check that the left vertical map is inner-anodyne
provided that S → T is left-anodyne. But this follows from Lemma 1.4.22 part (1). For
proving (2), we need to check that the map

S � B �S�A T � A → T � B

is left-anodyne provided that the map S → T is left-anodyne. But this is the content of
Lemma 1.4.22, part (2). In order to prove (3), we observe that if S → T is a monomorphism
and A → B is right-anodyne, then the map A � T �A�S B � S → B � T is inner-anodyne,
again by Lemma 1.4.22, part (1). Lastly, in order to prove (4), we only need to use the fact
that the map A�T �A�S B �S → B �T is always a monomorphism and that trivial fibrations
satisfy the RLP with respect to monomorphisms. ��

Let us spell out some explicit special cases in the following corollary.

Corollary 1.4.24
Suppose that we are given maps A → B → X → Y as before, where A → B is a
monomorphism and X → Y is an inner fibration.

(1) If Y = ∗, so that X is an ∞-category, we get that Xϕ/ → Xϕi/ is a left fibration
and that X/ϕ → X/ϕi is a right fibration. In particular, if A = ∅, then the map
Xϕ/ → X is a left fibration and X/ϕ → X is a right fibration. In particular, Xϕ/

and X/ϕ are ∞-categories if X is.
(2) If Y = ∗, so that X is an ∞-category, we get that Xϕ/ → Xϕi/ is a trivial fibration

if A → B is right-anodyne, and that X/ϕ → X/ϕi is a trivial fibration if A → B

is left-anodyne.
(3) If f : X → Y is a trivial fibration, consider the case where A = ∅. Then the map

Xϕ/ → X×Y Yfϕ/ is a trivial fibration. Furthermore, the map X×Y Yfϕ/ → Yfϕ/

is a pullback of X → Y and therefore also a trivial fibration.

Yet another special case of this result is the following: Suppose that C is an ∞-
category and that f : x → y is a morphism in C. We can consider the situation
�0 → �1 → C → ∗ and obtain maps

C/x ← C/f → C/y

which correspond to the two restrictions of f to �0 (likewise for the other slice).
Since the inclusion {0} → �1 is left-anodyne, it follows from Corollary 1.4.24, part
(2), that the map Cf/ → Cx/ is a trivial fibration. Therefore, we can choose a section
in order to obtain a composite

C/x → C/f → C/y,

which we can informally think of as the functor of post-composition with f . The
same works for the other slice in order to obtain a functor Cy/ → Cx/ which we can
think of as precomposition with f .



2Joyal’s Theorem, Applications, and Dwyer–Kan
Localizations

2.1 Joyal’s Special Horn Lifting Theorem

In this section, we start out with the notion of a conservative functor, i.e., a functor
which detects whether a given morphism is an equivalence. Afterwards, we will
show Joyal’s lifting theorem, which states that conservative inner fibrations are
characterized by a lifting property with respect to the so-called special horns, i.e.,
those horns where a particular edge is sent to an equivalence. From this, we will
deduce that ∞-groupoids are Kan complexes, which is one of the central results in
the theory.

Definition 2.1.1
A functor F : C → D between ∞-categories is called conservative if it detects
equivalences, i.e., if whenever f : x → y is a morphism in C such that F(f ) : F(x) →
F(y) is an equivalence inD, then f itself is an equivalence.

Observation 2.1.2
A functor F : C → D is conservative if and only if its opposite functor F op : Cop →
Dop is conservative.

Proposition 2.1.3
Left and right fibrations between ∞-categories are conservative.
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ProofBy passing to opposite categories, it suffices to treat the case of left fibrations. Suppose
that a morphism f : �1 → C is given which becomes an equivalence in D. Consider the
diagram

2
0

2

p

where the map �2
0 → C is given by f on the edge �{0,1} and by the identity on �{0,2} .

Since the image in D is an equivalence, there exists a dashed arrow making the diagram
commute. Since C → D is a left fibration, the dotted arrow exists as well. This proves that
f admits a left inverse in C which becomes a left inverse of p(f ) after applying p, and thus
an equivalence after applying p. The same argument for this morphism proves that it itself
admits a left inverse, which shows that the first constructed left inverse of f is an equivalence.
Therefore, f is an equivalence as well. ��

Definition 2.1.4
A inner fibration C → D of ∞-categories is called an isofibration if every lifting problem

{0}

1 f

where f represents an equivalence of D has a solution which represents an equivalence
of C.

Lemma 2.1.5
An inner fibration C → D between ∞-categories is an isofibration if and only if the
induced functor N(hC) → N(hD) is an isofibration.

Proof Exercise 79. ��

Corollary 2.1.6
A functor C → D between ∞-categories is an isofibration if and only if Cop → Dop is
an isofibration.
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Proof Exercise 80. ��

Proposition 2.1.7
Left and right fibrations between ∞-categories are conservative isofibrations.

Proof Left and right fibrations are conservative by Proposition 2.1.3. Now let p : C → D be
a left fibration and consider a lifting problem as in Definition 2.1.4. Since C → D is a left
fibration and {0} → �1 is left-anodyne, a lift as needed exists. By conservativity, any such
lift is an equivalence. For right fibrations, use Corollary 2.1.6. ��

Theorem 2.1.8
Let C → D be an inner fibration between ∞-categories and let φ : �1 → C be a
morphism in C. Then for n ≥ 2, a lifting problem

{0,1} n
0

n

where the top composite is φ can be solved if φ is an equivalence in C.

Proof In order to prove the lifting property under the assumption that φ is an equivalence, we
consider a diagram

{0,1} n
0

n

where the top horizontal composite is an equivalence in C, say φ. , and we wish to show
the existence of the dashed arrow. For this purpose, we observe that the map �n

0 → �n is
isomorphic to the join-pushout product

{0} � �−2+n �{0}�∂�−2+n �1 � ∂�n−2 → �1 � �−2+n,

where �−2+n is the short form for �{2,...,n}. (This result is found in Exercise 71.) The map
�{0,1} → �n

0 identifies with the canonical composite

�1 → �1 � ∂�−2+n → {0} � �−2+n �{0}�∂�−2+n �1 � ∂�n−2.
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The above diagram is, by adjunction, equivalent to the diagram

{0} −2+n

1 −2+n × −2+n −2+n
φ

φ

We claim that all of the three top horizontal maps in the diagram

−2+n −2+n × −2+n −2+n −2+n

−2+n −2+n

are right fibrations and thus conservative by Proposition 2.1.3: The first map is the dual
version of Theorem 1.4.23, part (1); the last map is explicitly stated in Corollary 1.4.24, part
(1); and the middle map is a pullback of D/�−2+n → D/∂�−2+n which is a right fibration
by the same reasoning as the first map, hence the pullback is also a right fibration. From
the assumption that φ is an equivalence, it follows that φ′ is also an equivalence. Hence the
dashed arrow exists due to the fact that right fibrations are isofibrations by Proposition 2.1.7.

��

Remark 2.1.9
For D = �0, we find that a lifting problem

{0,1} n
0

n 0

φ

can be solved if and only if φ is an equivalence. The “if” case was just dealt with.
Assume conversely that any such lifting problem can be solved. From the case n = 2,
we find a left inverse α of f , witnessed by a 2-simplex τ . We can then consider a 3-horn

(continued)
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2.1.9 (continued)
in C whose restriction to the spine is given by (f, α, f ); more precisely, we consider
the map σ : �3

0 → C with the following faces:

1. σ|�{0,1,2} = τ ,
2. σ|�{0,1,3} = s1(f ),
3. σ|�{0,2,3} = s0(f ).

Then the face σ|�{1,2,3} is a witness that α is also a right inverse of f , and thus that f is
an equivalence.

The general case of Theorem 2.1.8 reads as follows.

Corollary 2.1.10
An inner fibration p : C → D between ∞-categories is conservative if and only if for
every n ≥ 2 and every lifting problem

{0,1} n
0

n

φ

p

where p(φ) is an equivalence inD, there exists a solution.

Proof Suppose that p is conservative. Then the assumption that p(φ) is an equivalence
implies that φ itself is an equivalence, and hence any such lifting problem can be solved
by Theorem 2.1.8. Conversely, suppose that any such lifting problem has a solution. In order
to show that p is conservative, let us consider a morphism φ : �1 → C such that p(φ) is
an equivalence in D. Consider the map �2

0 → C whose restriction to �{0,1} is φ and whose
restriction to �{0,2} is the identity. Since φ becomes an equivalence in D, there exists the
solid arrows in the lifting problem

{0,1} n
0

n

φ

p

which can be solved by assumption. This provides a left inverse ψ of φ. As in the proof of
Proposition 2.1.3, it follows that p(ψ) is an equivalence. Running the same argument for ψ
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instead of φ, we again find that ψ itself admits a left inverse and hence is an equivalence.
Therefore, φ is an equivalence as well, and consequently, p is conservative. ��

Remark 2.1.11
The opposite of the inclusion �{0,1} → �n

0 is given by the map �{n−1,n} → �n
n. Since

inner fibrations and conservative functors are invariant under passing to opposites, we
find that the analogues statements of Theorem 2.1.8 and Corollary 2.1.10, where we
replace the inclusion �{0,1} → �n

0 by the map �{n−1,n} → �n
n, hold as well.

Notice that for us, the important direction in Corollary 2.1.10 is that such lifting
problems can be solved provided that p is conservative, as the next corollary shows.

Corollary 2.1.12
∞-groupoids are Kan complexes.

Proof By definition, ∞-groupoids are precisely those ∞-categories C where the canonical
map C → ∗ is conservative. Thus the claim follows from Corollary 2.1.10 ��

We are now in the position to define the ∞-category of ∞-categories:

Definition 2.1.13
The ∞-category Cat∞ of ∞-categories is the coherent nerve of the simplicial category
with objects being ∞-categories and hom-simplicial sets given by the maximal ∞-
groupoid inside the functor ∞-category Fun(C,D). (The definition relies on the fact that
the formation of the maximal ∞-groupoid is a monoidal functor from ∞-categories to
Kan complexes: It is right-adjoint to the inclusion and thus preserves products.)

Definition 2.1.14
A functor f : C → D between ∞-categories is a Joyal equivalence (or categorical
equivalence), if the corresponding 1-simplex in Cat∞ is an equivalence in the sense of
Definition 1.2.22.

Remark 2.1.15
Concretely, this means that there is a 2-simplex σ : �2 → Cat∞ such that σ|�{0,1} = f

and σ|�{0,2} = idC. From Observation 1.2.66, we find that for g = σ|�{1,2} we
have specified a 1-simplex in Fun(C,D)� from gf to idC. In other words, f is an

(continued)
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2.1.15 (continued)
equivalence if and only if there are a functor g : D → C and natural equivalences
gf � idC and fg � idD, in the sense of the next definition.

Definition 2.1.16
Two functors f, f ′ : C → D are called (naturally) equivalent if the corresponding
morphisms in Cat∞ are equivalent in the sense of Definition 1.2.22.

Remark 2.1.17
Unwinding these definitions, we find that f is equivalent to f ′ precisely if there exists
a natural equivalence τ : f → f ′, i.e., if τ is an equivalence between f and f ′ in the
∞-category Fun(C,D).

We shall continue with more applications of Joyal’s extension theorem. For this,
recall that J denotes the contractible groupoid with two objects 0 and 1.

Corollary 2.1.18
Equivalences in an ∞-category C are represented precisely by those maps �1 → C

which extend over the canonical map �1 → J .

Proof The fact that any map �1 → C which extends over J is an equivalence is discussed
in Exercise 61. Conversely, an equivalence is represented by a map �1 → C� ⊆ C. In order
to show that this map extends over the extension �1 → J , it suffices by Corollary 2.1.12
to observe that C� is a Kan complex and that the map �1 → J is anodyne. (Note that
its geometric realization is a homotopy equivalence, since both are contractible.) See also
Lemma 2.4.5 for a purely simplicial proof of the fact that this map is anodyne. ��

Corollary 2.1.19
The pullback of a conservative inner fibration C → D along any functor D′ → D of
∞-categories is again a conservative inner fibration.
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Proof We use the lifting criterion for conservative inner fibrations as established in Corol-
lary 2.1.10 and consider the diagram

{0,1} n
0

n

q p

where the composite �1 → D′ represents an equivalence, and we want to show that the
dashed arrow exists. Since p is conservative, the dotted arrow exists. Hence the dashed arrow
exists as well, because the right square is a pullback. Therefore, q is conservative. ��

Proposition 2.1.20
A inner fibration p : C → D between ∞-categories is an isofibration if and only if the
induced functor C� → D� is a Kan fibration.

Proof First, let us suppose that p is an isofibration. As a first step, we show that the induced
functor p� : C� → D� is also an isofibration. For this purpose, consider a lifting problem

n
j

n

Since p is an inner fibration, a dotted arrow exists. We claim that the dotted arrow must
already land in C�, thus giving rise to the dashed arrow. This simply follows from the fact
that its restriction to the spine lands in C�, which implies that the whole n-simplex lies in
C�. Clearly, p� satisfies the further lifting property of isofibrations: The definition says that
any lifting problem

{0}

1

has a solution. (We simply spell out that certain 1-simplices are required to be equivalences.)
Next, we observe that p� is clearly conservative, as is any functor from an ∞-groupoid.

Therefore, we know that p� : C� → D� is a conservative inner fibration as well as
an isofibration. In order to see that it is a Kan fibration, we first show that it is a left
fibration. The left horn �0 → �1 can be extended, because p� is an isofibration. For the
higher-dimensional left horns, we use the criterion for conservative inner fibrations given by
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Corollary 2.1.10, which tells us that lifts exist provided that certain edges of the horn map
to equivalences. But this condition is tautologically fulfilled, because C� is an ∞-groupoid.
Running the same argument (using the version of Joyal lifting with the right outer horn), we
also find that p� is a right fibration, and hence a Kan fibration.

The converse direction of the proof is obvious: The map {0} → �1 is a horn inclusion,
and thus admits a lift for C� → D�, because we assume it to be a Kan fibration. This shows
that p is an isofibration. ��

Proposition 2.1.21
An inner fibration C → D is an isofibration if and only if it has the RLP with respect
to �0 → J . In particular, the isofibrations are precisely the Joyal fibrations between
∞-categories according to Definition 1.3.27.

Proof It is clear that having the lifting property with respect to �0 → J implies that the map
is an isofibration. In order to show the converse direction of the proof, we observe that every
diagram

0

J

factors through the subcategories of equivalences of C and D, respectively. Therefore, it
suffices to show that a map f : C → D is an isofibration if and only if the induced map
C� → D� is a Kan fibration, which was done in Proposition 2.1.20. ��

Corollary 2.1.22
Isofibrations are stable under pullback.

2.2 Pointwise Criterion for Natural Equivalences

The goal of this section is to prove that a natural transformation τ between functors
f, g : C → D of ∞-categories which is pointwise an equivalence is itself an
equivalence when viewed as a morphism in the ∞-category of functors Fun(C,D).
Unlike the case of ordinary categories (where taking the unique inverse pointwise
is easily seen to assemble into an inverse natural transformation), this is not at all
obvious in the situation of ∞-categories. Therefore, we need to prove the following
theorem.
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Theorem 2.2.1
Let L → K be a map between simplicial sets which induces a bijection L0 → K0.
Then, for every ∞-category C, the induced functor

Fun(K,C) −→ Fun(L,C)

is conservative.

Corollary 2.2.2
The canonical functor

Fun(K,C) −→
∏

x∈K0

C

is conservative. In other words, let f : �1 → Fun(K,C) be a natural transformation
between two functors F,G : K → C. If, for all x ∈ K , the induced morphism �1 → C

is an equivalence, then f is an equivalence.

In order to prove Theorem 2.2.1, we observe that it is enough to treat the case
of Corollary 2.2.2, in which L → K is the map K0 → K , with K0 = sk0(K)

being the discrete simplicial set on the zero simplices of K . This is readily seen by
considering the diagram

Fun(K, ) Fun(L, )

Fun(K0, ) Fun(L0, )
∼=

where the lower horizontal functor is an isomorphism, and the vertical functors
are conservative by assumption. It follows that the upper horizontal functor is also
conservative.

In this case, we consider the skeletal filtration on K and obtain a tower of
simplicial sets

. . . −→ Fun(skn(K),C) −→ Fun(skn−1(K),C) −→ . . . −→ Fun(sk0(K),C)

whose inverse limit is Fun(K,C). Note that all maps appearing in the above tower
are inner fibrations by Theorem 1.3.37.

We first show that the functor Fun(K,C) → Fun(sk0(K),C) is conservative if
each of the functors Fun(skn(K),C) → Fun(skn−1(K),C) are conservative. To do
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so, we wish to employ Corollary 2.1.10 to show that the functor Fun(K,C) →
Fun(K0,C) is conservative. So we consider a lifting problem

n
0 Fun(K, )

Fun(skn(K), )

Fun(skn−1(K), )

n Fun(sk0(K), )

where the special edge �{0,1} ⊆ �n
0 is sent to an equivalence in Fun(sk0(K),C).

Inductively, we wish to show that, given the dotted arrow, we can construct the
dashed arrow, which makes all diagrams commute. This is possible by Corol-
lary 2.1.10 and the assumption that the maps induced by skn−1(K) → skn(K)

are conservative.
It remains to show that for n ≥ 1, the functors Fun(skn(K),C) →

Fun(skn−1(K),C) are in fact conservative. There are pullback diagrams

Fun(skn(K), ) Fun n, )

Fun(skn−1(K), ) Fun n, )

and since products of conservative functors are conservative, all vertical maps are
inner fibrations, and pullbacks of conservative inner fibrations are conservative, it
suffices to show that for each n ≥ 1, the functor

Fun(�n,C) −→ Fun(∂�n,C)

is conservative. First, we treat the case where n ≥ 2. In this case, the inclusion
In → �n factors through ∂�n, so we may consider the composite

Fun(�n,C) −→ Fun(∂�n,C) −→ Fun(In,C).

Since the inclusion In → �n is inner anodyne by Proposition 1.3.22, it follows from
Theorem 1.3.37 that the above composite is a trivial fibration and hence conservative
by Proposition 2.1.3. (Notice that trivial fibrations are left and right fibrations, in
particular.) It follows that Fun(�n,C) → Fun(∂�n,C) is also conservative, as
claimed. For finishing the proof of Theorem 2.2.1, it hence suffices to prove the
following proposition.
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Proposition 2.2.3
Let C be an ∞-category. Then the canonical functor Fun(�1,C) → Fun(∂�1,C) =
C × C is conservative.

Proof As in the proof of Proposition 2.1.3, it suffices to show that any lifting problem of the
kind

2
0 Fun 1, )

2 Fun 1, )

(f,id)

σ

where f is sent to an equivalence in Fun(∂�1,C) is an equivalence, admits a solution.
This implies that f itself admits a left inverse g, whose image in Fun(∂�1,C) is again an
equivalence. Applying the same reasoning for g, we find that g, and hence f , is invertible.

In order to solve the lifting problem, by adjunction we may equivalently solve the
following lifting problem:

2
0 ×

1 ∪ 2 × 1

2 × 1

Wewill do this by attaching one 2-simplex and three 3-simplices toF0 = �2
0×�1∪�2×∂�1

to obtain �2×�1, and extending the map to C step by step: Describing �2×�1 as the nerve
of the category depicted by the diagram

10 11 12

00 01 02

we first attach the 2-simplex σ2 given by the composable maps 01 → 02 → 12. Its
intersection with F0 is the inner 2-horn, so we can extend the given map to F1 = F0 ∪ σ2,
since C is an ∞-category. Next, we consider the 3-simplex τ3,1 given by the composable
maps 00 → 01 → 02 → 12. One can readily check that its intersection with F1 is again
an inner 3-horn, so we can extend the given map to F2 = F1 ∪ τ3,1. Next, we consider τ3,2

given by 00 → 01 → 11 → 12. Again, one finds that its intersection with F2 is an inner
horn, so the map can be extended to F3 = F2 ∪ τ3,2. Finally, we consider τ3,3 given by
00 → 10 → 11 → 12. This time, the intersection with F3 is given by the left outer horn �3

0,
but by assumption, the special edge �{0,1} ⊆ �3

0 is sent to an equivalence. Hence we may
extend the given map to F4 = F3 ∪ τ3,3 thanks to Joyal’s lifting theorem (Theorem 2.1.8).
Noting that F4 = �2 × �1, the proposition is shown. ��
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Corollary 2.2.4
Proposition 1.3.48 holds true. More precisely, given a monomorphism L → K of
simplicial sets which is a bijection on 0-simplices, then the fibre of the induced map
Fun(K,C) → Fun(L,C) over any point �0 → Fun(L,C) is an ∞-groupoid. In
particular, for an ∞-category C, the ∞-category mapC(x, y) is an ∞-groupoid.

Proof By Theorem 2.2.1, the functor Fun(K,C) → Fun(L,C) is a conservative inner
fibration, therefore the pullback along �0 → Fun(L,C) is a conservative inner fibration
as well (by Corollary 2.1.19). But X → ∗ is a conservative inner fibration if and only if X is
an ∞-groupoid. ��

Note that the “in particular” part of Corollary 2.2.4 is a direct application of
Proposition 2.2.3.

We finish this section with some stability properties of isofibrations.

Proposition 2.2.5
Let p : C → D be an inner fibration and let i : K → L be a monomorphism of
simplicial sets. Suppose that

(1) p is an isofibration, or
(2) i induces a bijection on 0-simplices.

Then the induced functor

CL → CK ×DK DL

is an isofibration.

Proof By Theorem 1.3.37, we know that this map is an inner fibration. It thus suffices to
show that any lifting problem

{0} L

1 K × K
L

where the bottom horizontal map is an equivalence, has a solution which is again an
equivalence. By Theorem 2.2.1, this is the case if for every object ofL, the induced morphism
in C is an equivalence. In particular, we see that if K → L is a bijection on 0-simplices,
the right vertical map in the above lifting problem is conservative, so that any lift of an
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equivalence is automatically an equivalence. By adjunction, this lifting problem is thus
equivalent to the lifting problem

{0} × L {0}×K
1 × K

1 × L

where the composite of the dashed map with the map �1 × �0 → �1 × L given by an
arbitrary object of L is an equivalence. We claim that the set of morphisms K → L for
which the conclusion holds is a saturated class. (We leave the verification of this claim
as Exercise 85.) It hence suffices to show the claim of the proposition for the boundary
inclusions ∂�n → �n in case (1) and the boundary inclusions with n ≥ 1 in case (2). If
n = 0, then we have the lifting problem

{0}

1

where the lower horizontal map is an equivalence. A dashed arrow representing an equiva-
lence in C exists because C → D is an isofibration by assumption. For the remaining cases
n ≥ 1, we need to consider diagrams of the form

{0} × n {0}× n
1 × n

1 × n

and since we will not use the fact that p is an isofibration, the following argument settles all
remaining cases of (1) and (2). One constructs a suitable filtration on �1 × �n, starting with
{0} × �n ∪ �1 × ∂�n, by adding the missing simplices (see e.g. [Rez20, Lemma 62.2] for
a concrete such filtration). One will then find that the relevant simplices are either attached
along inner horn inclusions, or along special outer horns (where the edge from 0 to 1 or n−1
to n is labelled with an equivalence). Using Joyal lifting, the proposition follows. ��

Corollary 2.2.6
Let K → L be a monomorphism of simplicial sets which induces a bijection on 0-
simplices. Then the map

{0} × L �{0}×K J × K → J × L

has the LLP with respect to inner fibrations between ∞-categories.
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Proof Let us consider an inner fibration p : C → D and a lifting problem

{0} × L {0}×K J × K

J × L

By adjunction, this lifting problem is equivalent to the lifting problem

{0} L

J K × K
L

and by Proposition 2.2.5 the right vertical map is an isofibration. Therefore, the lifting
problem can be solved by Proposition 2.1.21. ��

Corollary 2.2.7
Let f : C → D be a functor between ∞-categories and K → L a monomorphism of
simplicial sets. Then

(CK ×DK DL)� = (CK)� ×(DK)� (DL)�.

Proof Both simplicial sets are subsets of the pullback CK ×DK DL, thus we easily find the
inclusion “⊆”. In order to show the converse, it suffices to prove that the right-hand side
is in fact an ∞-groupoid, since in this case it certainly contains the smallest ∞-groupoid
contained in CK ×DK DL, which is the left-hand side. By applying Proposition 2.2.5 to
the isofibration D → �0, we find that DL → DK is also an isofibration. Therefore, by
Proposition 2.1.20, the map (DL)� → (DK)� is a Kan fibration between Kan complexes,
so that any pullback along a map from a Kan complex is again a Kan complex. ��

Proposition 2.2.8
Let f : C → D be a functor between ∞-categories. Then f is a Joyal equivalence if
and only if, for every ∞-category E, the induced map

f ∗ : Fun(D,E) → Fun(C,E)

is a Joyal equivalence.
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Proof In order to prove the “only if” part, choose an inverse D → C and natural trans-
formations (η0, η1) witnessing that g is inverse to f . Then the quadruple (f ∗, g∗, η∗

0 , η
∗
1)

determines an equivalence between Fun(C,E) and Fun(D,E).
We now show that f is in fact a Joyal equivalence if, for all ∞-categories E, the functor

f ∗ is a Joyal equivalence. By Exercise 87, we obtain a bijection

f ∗ : π0(Fun(D,E)�)
∼=−→ π0(Fun(C,E)�)

Now consider the case where E = C: This bijection shows the existence of a functor g : D →
C such that f ∗(g) = gf is equivalent to idC. Taking E = D, we see that

f ∗(fg) = fgf � f,

and thus fg � idD as needed. ��

Definition 2.2.9
A map f : X → Y between simplicial sets is called a Joyal equivalence (or categorical
equivalence) if, for all ∞-categories C, the induced map

Fun(Y,C) → Fun(X,C)

is a Joyal equivalence between ∞-categories.

Observation 2.2.10
This does not change the definition if X and Y are already ∞-categories by Proposi-
tion 2.2.8.

Observation 2.2.11
A Joyal equivalence between Kan complexes is precisely a homotopy equivalence.

Proposition 2.2.12
A trivial Kan fibration f : X → Y is a Joyal equivalence.

Proof Consider the following pullback squares of simplicial sets:

Hom/Y (Y,X) Hom(Y,X) Hom/Y (X,X) Hom(X,X)

0 Hom 0 Hom(X, Y )

f∗ f∗
idY f
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The right vertical maps in each square are trivial fibrations, therefore the same is true for their
pullbacks. But a trivial fibration over �0 has a contractible Kan complex as a source. Choose
a 0-simplex s ∈ Hom/Y (Y,X) such that f∗(s) = f s = idY . (For this, recall that f∗, as every
trivial fibration, admits a section, and that any 0-simplex s ∈ Hom(Y,X) with f s = idY lies
in Hom/Y (Y,X).) Then sf determines a 0-simplex in Hom/Y (X,X), and therefore, there
must be a 1-simplex connecting it to the identity (again because these spaces of sections are
contractible). Explicitly, we can find a map

�1 → Hom/Y (X,X)

whose restriction to 0 is sf and whose restriction to 1 is idX . For an arbitrary ∞-category,
we can compose this map with the canonical map

Hom/Y (X,X) → Hom(X,X) → Hom(CX,CX)

and see that the resulting map

�1 → Hom/Y (X,X) → Hom(CX,CX)�

determines a natural equivalence between (sf )∗ and idCX . Since (f s)∗ = idCY , we have
shown that f ∗ and s∗ determine inverse equivalences of CX and CY , for any ∞-category Y ,
so that f ∗ is a Joyal equivalence. Therefore, f itself is a Joyal equivalence. ��

Corollary 2.2.13
An inner-anodyne map is a Joyal equivalence.

Proof Let i : A → B be an inner-anodyne map and C an ∞-category. We need to show that
CB → CA is a Joyal equivalence. By Theorem 1.3.37, part (2), this map is a trivial fibration,
thus the claim is shown by Proposition 2.2.12. ��

Corollary 2.2.14
Every simplicial set is Joyal-equivalent to an ∞-category.

ProofBy the small object argument, Proposition 1.3.9, for any simplicial setX one can factor
the map X → ∗ into an inner-anodyne map followed by an inner fibration. This yields a map
X → C where C is an ∞-category and X → C is inner-anodyne. By Corollary 2.2.13, this
map is a Joyal equivalence. ��
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Lemma 2.2.15
A Kan fibration p : X → Y between Kan complexes which induces a surjection on π0

is in fact surjective on 0-simplices. Likewise, a Kan fibration between Kan complexes
which induces an injection on π0 and a surjection on π1 has the property that any
lifting problem

1 X

1 Y

can be solved.

Proof Since any homotopy equivalence induces a bijection on simplicial path components,
we find for a 0-simplex y : �0 → Y a commutative diagram

{0} X

1 Y

x

h

where h|{1} = y. Since p is a Kan fibration, a dashed arrow exists. Its restriction to {1}
provides a preimage of y in X.

As for the second claim, pick two objects x, x′ of X which give rise to the top horizontal
map in the commutative diagram

1 X

1 Yh

We wish to show that this diagram admits a dashed arrow. The assumption that p induces
a surjection on π1 implies that the same is true not only for loops at a point of x, but also
at homotopy classes of paths from x to x′. (This is where we use the fact that p induces an
injection on path components: Namely, the assumptions imply that there exists a path from
x to x′ in X which we can use to compare the set of homotopy classes of paths from x to x′
to the set of homotopy classes of loops at x.) One can thus find a path α : �1 → X which
becomes equivalent to h after applying p. This means that we can find a 2-cell σ : �2 → Y

such that σ|�{0,1} = p(α), σ|�{0,2} = h and σ|�{1,2} = idx′ . Since we can lift both p(α) and the
identity, we obtain a lifting problem
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2
1 X

2 Y
σ

which can be solved, because p is a Kan fibration. The resulting map solves the original
lifting problem. ��

Remark 2.2.16
In fact, a Kan fibration which is also a weak equivalence is a trivial fibration. This is
a classical fact in simplicial homotopy theory, which we can deduce from the previous
lemma together with the following observation.

Lemma 2.2.17
A functor p : C → D between ∞-categories is a trivial fibration if and only if it is a
Joyal equivalence and an isofibration.

Proof Trivial fibrations are Joyal equivalences by Proposition 2.2.12, and they are isofibra-
tions because a trivial fibration is a left fibration which in turn is a conservative isofibration
by Proposition 2.1.7.

In order to see the converse direction of the proof, we need to show that, for any
monomorphism K → L, a lifting problem

K

L

p

has a solution. This is equivalent to the lifting problem

∅ L

0 K × K
L

p

which amounts to showing the surjectivity of the right map on 0-simplices. For the proof of
this claim, we may shift to the underlying groupoid cores, since this shift does not change
the 0-simplices.
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By Proposition 2.2.5, p is an isofibration because p is an isofibration. In particular, the
induced map

(CL)� p→ (CK ×DK CL)�

is a Kan fibration. Furthermore, by Corollary 2.2.7 the latter map is equal to (along the
canonical map) the pullback of the groupoid cores, therefore we find that the map

(CL)� → (CK)� ×(DK )� (DL)�

is a Kan fibration. We wish to show that this map is surjective on 0-simplices. By
Lemma 2.2.15, it suffices to show that it induces a surjection on π0. For this, we observe
that since C → D is a Joyal equivalence, so are the maps

CK → DK and CL → DL

by Exercise 90. Since they are isofibrations, passing to groupoid cores gives us Kan fibrations,
which are in addition Joyal equivalences.

Next, we consider the diagram

( L) ( K) ×( K) ( L) ( L)

( K) ( K)

and note that all maps are Kan fibrations and that both the composite and the lower horizontal
map are Joyal equivalences, and thus homotopy equivalences. We wish to show that the
second top horizontal map induces a bijection on π0, so that the first map induces a surjection
on π0. For this, we observe that the lower horizontal map has the RLP with respect to ∂�1 →
�1 by Lemma 2.2.15. As a pullback, the same applies to the second top horizontal map,
which implies that this map is injective on π0.

Using Lemma 2.2.15, we find that the map

(CL)� → (CK)� ×(DK )� (DL)�

induces a surjection on 0-simplices. This proves the lemma. ��

Corollary 2.2.18
A Kan fibration p : X → Y between Kan complexes is a trivial Kan fibration if and
only if it is a homotopy equivalence. In particular, among Kan fibrations, the trivial
Kan fibrations satisfy the 3-for-2 property.
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In this context, a set of maps S is said to have the 3-for-2 property if for any two
composable maps g and f , if two of the three maps f , g, and gf are contained in
S, then so is the third.

Proof A Kan fibration which is a homotopy equivalence is an isofibration which is a
Joyal equivalence. The “in particular” part follows from the 3-for-2 property for homotopy
equivalences. ��

Remark 2.2.19
Corollary 2.2.18 implies that given an isofibration p : C → D which is in addition a
Joyal equivalence, the induced map

(CL)� p→ (CK ×DK CL)�

is in fact a trivial fibration. Indeed, since C → D is a Joyal equivalence, the maps

CK → DK and CL → DL

are also Joyal equivalences. Hence, in the composite

(CL)� → (CK)� ×(DK)� (DL)� → (DL)�,

both the composite and the latter map are trivial fibrations: As for the composite, it
is a Kan fibration which is a homotopy equivalence and thus a trivial fibration; as for
the latter map, it is a pullback of the map (CK)� → (DK) � which is a trivial Kan
fibration by the same reasoning. By the 3-for-2 property for trivial fibrations (among
Kan fibrations), it follows that the map

(CL)� → (CK)� ×(DK)� (DL)�

is also a trivial fibration.

2.3 Fully Faithful and Essentially Surjective Functors

The goal of this section is to prove that, as in ordinary category theory, functors
which are essentially surjective and fully faithful are in fact invertible. The proof
which we will present follows an argument which we learned from Gijs Heuts. It
uses some results from classical simplicial homotopy theory.
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Remark 2.3.1
Note that the proof of this fact in ordinary category theory, which we present in
Exercise 36, goes through verbatim in ∞-categories once the necessary machinery is
established: The main thing to prove is that an essentially surjective and fully faithful
functor admits an adjoint, which will then be an inverse. Of course, for this argument
to make sense we will have to speak of adjunctions, and our way to do this will require
the straightening-unstraightening equivalence. We will come to adjunctions in Sect. 5.1
and to this approach in Exercise 153.

Definition 2.3.2
A functor f : C → D is called fully faithful if, for all objects x, y ∈ C, the induced map
mapC(x, y) → mapD(f x, fy) is a Joyal equivalence, i.e., a homotopy equivalence.

Definition 2.3.3
A functor f : C → D is called essentially surjective if the induced functor hf : hC → hD

is essentially surjective. In other words, if for every object d ∈ D, there exists an object
x ∈ C and an equivalence f x � d inD.

Lemma 2.3.4
Let f, g : C → D be functors and let τ : �1 → Fun(C,D) be a natural transformation
from f to g. Then the diagram

map (x, y) map (f x, fy)

map (gx, gy) map (f x, gy)

commutes up to homotopy. If τ is a natural equivalence, then the lower horizontal map
and the right vertical map are equivalences. In particular, if D = C and g = idC, we
find that if f is equivalent to idC, then the map

mapC(x, y) → mapD(f x, fy)

is a homotopy equivalence.

Proof Recall that there is a functor Fun(C,D) → Fun(C�1
,D�1

) induced by post-
composition. The given transformation τ thus induces a functor �1 → Fun(C�1

,D�1
)

which is (by adjunction) a functor

C�1 → D�1×�1
.
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Unravelling this construction, we find that this functor sends a morphism x → y to the
diagram

f x gx

fy gy

τx

τy

Therefore, we find a diagram

1 1× 1 1 × 1

1 × 1 1

where the horizontal functor from D�1×�1
is given by restriction along the map �2

1 →
�1 × �1, which singles out one corner of the square, and the vertical functor is given by
restriction along the map �2

1 → �1 × �1, which singles out the other corner. The diagonal
map is given by restriction along the inclusion �1 → �1 × �1, sending 0 to (0, 0) and 1 to
(1, 1). The remaining two functors are given by composition. Both of the triangles commute
up to a natural equivalence (one has to choose a section of the trivial fibrationD�2 → D�2

1 ).
Now we fix two objects x and y of C and consider the inclusion mapC(x, y) → C�1

. By
closer inspection, we find that the diagram

map (x, y) {τx} × map (gx, gy)

1 1 × 1

commutes, i.e., the lower composite factors as indicated by the dashed arrow.
The same holds for the restriction of the vertical map to mapC(x, y), so that in total we

obtain a diagram

map (x, y) {τx} × map (gx, gy)

map (f x, fy) × {τy} map (f x, gy)

which commutes up to a natural equivalence as needed. ��
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Proposition 2.3.5
A Joyal equivalence between ∞-categories is fully faithful and essentially surjective.

Proof The functor hC → hD is an equivalence, see Exercise 89, and thus essentially
surjective. Therefore, C → D is essentially surjective according to Definition 2.3.3. In order
to show full faithfulness, choose an inverse g of f . Then, for a pair of objects x, y ∈ C, we
get

mapC(x, y) → mapD(f x, fy) → mapC(gf x, gfy) → mapD(fgf x, fgfy).

Since the functor gf is naturally equivalent to idC and the functor fg is naturally equivalent
to idD, we see that both the first two maps and the latter two maps compose into an
equivalence. This implies that the middle map is itself an equivalence (having both a left
and a right inverse) and thus that the first map is also an equivalence (being the right-inverse
of an equivalence). ��

Remark 2.3.6
Alternatively, one can argue as follows: By Exercise 65, we find that every ∞-category
gives rise to a category enriched in the homotopy category of Kan complexes, because
composition is well-defined up to homotopy. With this result, we find that a functor
f : C → D is a Joyal equivalence if and only if the induced functor of h(Kan)-enriched
categories is an equivalence. Likewise, it is fully faithful and essentially surjective if
and only if the induced functor of h(Kan)-enriched categories is fully faithful. From
this analysis, we deduce that if f is naturally equivalent to g, then f is fully faithful
if and only if g is. In the above argument, we can apply this result to gf , which is
equivalent to idC and thus must be fully faithful itself, so that the required map is in
fact a homotopy equivalence.

For future reference, we note the following two lemmas.

Lemma 2.3.7
The inclusion of a full subcategory C0 ⊆ C is a fully faithful functor.

ProofWe first observe that for every ∞-category D, the ∞-category Fun(D,C0) is the full
subcategory of Fun(D,C) on those functors which factor through C0 ⊆ C, see Exercise 47.
With this result, we can deduce that the diagram
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Fun 1, 0) Fun 1, )

0 × 0 ×

is a pullback. This implies the lemma by passing to fibres over objects (x, y) of C0 × C0. ��

Lemma 2.3.8
Let C be an ∞-category and let x, y be objects of C. Then the map

mapC� (x, y) → mapC(x, y)

is the inclusion of those path components whose points are equivalences of C.

ProofWewill show that any map�n → mapC(x, y) lifts to mapC�(x, y) if for every i ∈ �n,
the corresponding morphism from x to y is an equivalence. For this, we consider a map
�n → mapC(x, y) such that, for all i ∈ �n, the restriction of its adjoint map

{i} × �1 → �n × �1 → C

represents an equivalence in C. Then we observe that, for all ε = 0, 1,

�n × {ε} → �n × �1 → C

is constant (at either x or y) and hence represents an equivalence of C as well. Since all
morphisms in �n × �1 are composites of morphisms of the previous form, we can deduce
that the map

�n × �1 → C

factors through C�, which shows the claim. ��

Next, we aim at proving the converse of Proposition 2.3.5, namely that a functor
which is fully faithful and essentially surjective is a Joyal equivalence. In order to
do so, we need the following preparatory statements.

Lemma 2.3.9
If f : C → D is fully faithful and essentially surjective, then so is f � : C� → D�.
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Proof Essential surjectivity is clear, since C� and C have the same objects. Full faithfulness
is also fine: Since the mapC�(x, y) ⊆ mapC(x, y) is a collection of path components (see
Lemma 2.3.8), it suffices to know the conclusion of the lemma in the case where C and D

are ordinary categories (by means of the homotopy category), which is an explicit and easy
check. ��

We will make use of the following fundamental property of Kan fibrations, see,
e.g., [GJ09, Lemma 7.3].

Lemma 2.3.10
Let f : X → Y be a Kan fibration between Kan complexes. Let x be a point in X and
let F be the fibre of f over the point y = f (x). Then there exists a long exact sequence

. . . πn+1(Y, y) πn(F, x) πn(X, x) πn(Y, y) . . . π0(X) π0(Y ),
∂ f∗ ∂

natural in morphisms of fibrations, which is an exact sequence of groups for n ≥ 1 and
an exact sequence of pointed sets for n = 0.

Additionally, we will need Whitehead’s theorem:

Proposition 2.3.11
Let f : X → Y be a map between Kan complexes which induces a bijection on path
components. Then f is a homotopy equivalence if and only if, for all points x in X and
all n ≥ 1, the induced map

f∗ : πn(X, x) → πn(Y, y)

is a bijection.

For a proof, combine for instance [GJ09, I.11.3 & II.1.10].

Corollary 2.3.12
A fully faithful and essentially surjective functor f : X → Y between Kan complexes
is a homotopy equivalence.

Proof Since the functor induces an equivalence of homotopy categories, we find that the map
f induces a bijection π0(X) → π0(Y ). We wish to show that for all x in X and all n ≥ 1,
the induced map

πn(X, x) → πn(Y, y)
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is also a bijection, where y = f (x). For this, we consider the following diagram:

mapX(x, x) Px(X) Fun 1,X)

0 0 × X X × X
(id,x) (x,idX)

Since the rightmost vertical map is an isofibration between Kan complexes, it is a Kan
fibration. Hence, the middle vertical map is a Kan fibration as well. This construction is
clearly natural in X, therefore we obtain a diagram of Kan fibre sequences

mapX(x, x) Px(X) X

mapY (y, y) Py(Y ) Y

where the vertical maps are induced by the map f : X → Y . We will now show that Px(X)

is contractible. For this purpose, note that it also sits in the pullback diagram

Px(X) Fun 1,X)

0 X

s

x

where t stands for the target map, i.e., the map obtained from restriction along {0} → �1.
Since this map is anodyne and X is a Kan complex, the resulting map Fun(�1,X) → X is a
trivial fibration, and hence the map Px(X) → �0 is also a trivial fibration. This implies that
Px(X) is indeed contractible.

We hence obtain that for all n ≥ 1 there is a commutative diagram

πn(X, x) πn−1(mapX(x, x), idx)

πn(Y, y) πn−1(mapY (y, y), idy)

where the horizontal maps are isomorphisms by the long exact sequence of Lemma 2.3.10
and the contractability of Px(X) and Py(Y ). Since f is fully faithful, the map mapX(x, x) →
mapY (y, y) is a homotopy equivalence, and hence induces bijections on all homotopy groups.
It follows that the left vertical map is also an isomorphism. ��



124 2 Joyal’s Theorem, Applications, and Dwyer–Kan Localizations

Corollary 2.3.13
A fully faithful and essentially surjective functor between ∞-categories induces a
homotopy equivalence on groupoid cores.

Proof By Lemma 2.3.9, the induced functor on groupoid cores is still essentially surjective
and fully faithful, so that Corollary 2.3.12 applies. ��

For Lemma 2.3.16, we will need Reedy’s lemma, which is the following
statement. In fact, it holds in any model category. For a proof for general model
categories, we refer to [Hir03, Prop. 13.1.2].

Lemma 2.3.14
Consider a pullback diagram

C ×A B B

C A

p

f

where p is a fibration and f is a weak equivalence between fibrant objects. Then the
map C ×A B → B is also a weak equivalence.

Remark 2.3.15
For simplicial sets, let us assume that we have long exact sequences in homotopy groups
for Kan fibrations at our disposal. In this case, we easily find from a diagram chase,
using the long exact sequence for the vertical fibrations, that the induced map

πi(C ×A B, x) → πi(B, x′)

is a bijection for every basepoint x of C ×A B and for every i ≥ 1. In order to prove
Reedy’s lemma for the case that interests us, it hence remains to see that the map
C ×A B → B induces a bijection on path components. For this, the arguments are very
similar to the ones used in the proof of Lemma 2.2.15.
Let us prove surjectivity of this map first: Pick a point b in B representing a class
[b] ∈ π0(B) and consider the point p(b) in A. Since C → A induces a bijection on
path components, we can find a point c in C and a path �1 → A connecting f (c) to
p(b). As in Lemma 2.2.15, this yields a lifting problem

(continued)
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2.3.15 (continued)

{0} B

1 A

which can be solved due to p being a Kan fibration. We thus find that there exists a
b′ in B such that p(b′) = f (c) and such that [b′] = [b] in π0(B). Therefore, the pair
(c, b′) determines an element of π0(C ×A B) which is sent to [b] in π0(B). This shows
that the map π0(C ×A B) → π0(B) is indeed surjective.
In order to show injectivity, consider two points (c, b) and (c′, b′) of C ×A B and
assume that there is a path α : �1 → B connecting b and b′ in B. Then p(α) : �1 → A

connects p(b) = f (c)with p(b′) = f (c′). Since the map f is a homotopy equivalence,
there is a path β : �1 → C such that f∗(β) is equivalent to p∗(α). More precisely, we
find a 2-cell σ : �2 → A such that

(1) σ|�{0,1} = f∗(β),
(2) σ|�{1,2} = idf (c′), and
(3) σ|�{0,2} = p∗(α).

Since we can lift both p∗(α) and idf (c′) along p, similarly as in Lemma 2.2.15, we find
a diagram

2
2 B

2 A
σ

which admits a dashed arrow as indicated, since p is a Kan fibration. It follows that
there exists a path γ : �1 → B connecting b and b′ such that p∗(γ ) = f∗(β).
Therefore, γ and β combine to a map �1 → C ×A B connecting (c, b) and (c′, b′).
This shows that the map in question is injective.

Lemma 2.3.16
Consider a diagram of Kan complexes

C A B

C A B

(continued)
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Lemma 2.3.16 (continued)
where the vertical maps are weak equivalences and the left horizontal maps are Kan
fibrations. Then the induced map on pullbacks

C ×A B → C′ ×A′ B ′

is again a weak equivalence.

Proof We first reduce the case in question to the situation where the maps B → A and
B ′ → A′ are also fibrations: By the small object argument, we find a commutative diagram

A D B

A D B

by functorially factoring the map B → A into a weak equivalence followed by a fibration
(in our case an anodyne map followed by a Kan fibration). It follows that both D and D′ are
fibrant, and we obtain a commutative diagram

C ×A B C ×A B

C ×A D C ×A D

for which we wish to show that the top horizontal map is an equivalence. We claim that both
vertical maps are equivalences: E.g., the left vertical map sits inside a pullback diagram

C ×A B C ×A D C

B D A

so that Reedy’s lemma implies that the top horizontal map is an equivalence. (The map
C ×A D → D is a fibration, since it is pulled back from C → A, which is a fibration by
assumption.) The argument for the right vertical map is analogous.

We may thus assume that in the statement of the lemma, all horizontal maps are in fact
fibrations. Note that the map in question factors into the composite

C ×A B → (C′ ×A′ A) ×A B = C′ ×A′ B → C′ ×A′ B ′.
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Now we can use Reedy’s lemma three times:

(1) The map C → C′ ×A′ A is an equivalence: By Reedy’s lemma, the map C′ ×A′ A → C′
is a weak equivalence, since it sits in the pullback

C ×A A C

A A

Hence in the composite

C → C′ ×A′ A → C′,

both the second map and the composite are equivalences. Then the 3-for-2 property for
equivalences confirms the claim.

(2) The map C ×A B → (C′ ×A′ A) ×A B is an equivalence: It sits in the pullback square

C ×A B (C ×A A) ×A B B

C C ×A A A

where the middle vertical map is a fibration, since it is pulled back from the map B → A,
which is now a fibration by assumption. The lower horizontal map is an equivalence by
the previous step, therefore the claim follows again by Reedy’s lemma.

(3) The map C′ ×A′ B → C′ ×A′ B ′ is an equivalence: It sits in a pullback square

C ×A B C ×A B C

B B A

where the right vertical map is a fibration, since it is pulled back from C′ → A′, which is
also a fibration by assumption. Now the map B → B ′ is an equivalence, so we conclude
again using Reedy’s lemma.

��

We will need a similar invariance statement for inverse limits. A more general
version of the following result can be found in [Hir03, Theorem 19.9.1].
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Lemma 2.3.17
Consider a natural transformation between functors Nop → sSet

. . . X3 X2 X1 X0

. . . Y3 Y2 Y1 Y0

and assume that all horizontal maps are fibrations, that all vertical maps are weak
equivalences and that all objects are Kan complexes. Then the induced map

lim
i

Xi → lim
i

Yi

is an equivalence.

Remark 2.3.18
Again, one can prove this result by using long exact sequences in homotopy groups.
Namely, it turns out that there is an exact sequence

0 lim1
i πk+1(Xi) πk(lim

i
Xi) lim

i
πk(Xi) 0

so applying (carefully!) a diagram chase argument shows that in our situation, the
induced map on inverse limits induces a bijection on all homotopy groups. For such
a proof, see, e.g., [Hir15].

Lemma 2.3.19
Consider a commutative diagram of Kan complexes

Y Y

X X

f

p p

f

where the map p is a fibration. Suppose that f ′ is a homotopy equivalence, and that for
each 0-simplex x′ of X′ the induced map p′−1(x′) → p−1(x) between vertical fibres is
an equivalence as well. Then the map f is a homotopy equivalence.
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Proof By Reedy’s lemma, we may assume without loss of generality that f ′ is the identity:
We can simply replace the map p by the canonical map X′ ×X Y → X′ and leave the fibres
unchanged, while knowing that the map X′ ×X Y → Y is an equivalence.

If long exact sequences in homotopy groups are available, it takes an easy diagram chase
to see that for every point y′ in Y ′ and every i ≥ 1, the map

πi(Y
′, y′) → πi(Y, y)

is a bijection, where y = f (y′). It hence remains to show that the map f induces a bijection
on path components.

In order to show injectivity, assume that two points x, y in Y ′ are given whose images
under f in Y are connected by a path α : �1 → Y . In other words, we have α(0) = f (x)

and α(1) = f (y). It follows that pα : �1 → X is a path between p(f (x)) = p′(x) and
p(f (y)) = p′(y). Consider the lifting problem

{0} Y

1 X

x

p

pα

β

which can be solved, since p′ is a fibration. We hence have p′β = pα, and since p′ = pf ,
we obtain pfβ = pα. Furthermore, we have fβ(0) = f (x) = α(0). We hence obtain a
lifting problem

2
0 Y

2 X

(fβ,α)

p

σ

τ

where σ is a degeneration of the path pα. This lifting problem can be solved, since p is a
Kan fibration. By restricting the dashed arrow τ to �{1,2} , we obtain a path from f (y) to
f (β(1)) which is sent by p to the constant path at p′(y). In other words, τ|�{1,2} is a path in
p−1(p′(y)). Since f restricts to a homotopy equivalence on this fibre, there is also a path
between y and β(1) inside p′−1(p′(y)). Since β(1) is connected (via β) with x, we find that
x and y are connected by a path in Y ′.

In order to show surjectivity, consider a point y of Y and let x = p(y). By definition, y

lies in the fibre Fx of p over x. This shows that Fx is not empty. By assumption, the map f ′
restricts to a homotopy equivalence Fx � F ′

x , where the latter denotes the fibre of p′ over x.
Pick a point y in F ′

x which corresponds to [y] under the bijection π0(F
′
x) → π0(Fx). Then

the map π0(Y
′) → π0(Y ) sends [y′] to [y], i.e., the map in question is indeed surjective. ��

We are now in the position to prove the characterization of Joyal equivalences as
the essentially surjective and fully faithful functors.
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Theorem 2.3.20
A fully faithful and essentially surjective functor f : C → D between ∞-categories is
a Joyal equivalence.

Proof We will prove the theorem by showing that for any simplicial set X, the canonical
functor

f∗ : (CX)� → (DX)�

is a homotopy equivalence. Once this is shown, one can consider X = D and, by inverting
the homotopy equivalence, obtain a diagram

0 ( )

1 ( )

g

f∗
h

where h is a path from idD to fg, i.e., h provides a natural equivalence between fg and
idD. In order to see that gf is also naturally equivalent to idC, we consider the homotopy
equivalence

f∗ : (CC)� → (DC)�

and observe that idC is sent to f and that gf is sent to fgf . But since fg is connected to
idD, we find that fgf is also connected to f through a natural equivalence. Since the above
map is a homotopy equivalence, this implies that there must also be a path between idC and
fg, so that any such path provides a natural equivalence fg � idC, and thus that f and g are
mutually inverse functors. Hence, f is a Joyal equivalence.

We will now prove the remaining claim. For this, we first consider the case where X =
�0. This is equivalent to the statement that f induces a homotopy equivalence of groupoid
cores, which we settled in Corollary 2.3.12. Next, we treat the case X = �1. We recall that
the source-target map C�1 → C × C is an isofibration, hence the resulting map

(C�1
)� → C� × C�

is a Kan fibration which fits into the commutative square

(
1
) ×

(
1
) ×
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where the right vertical map is a homotopy equivalence by the previous step (and the
observation that products of Joyal equivalences are again Joyal equivalences). According
to Lemma 2.3.19, in order to show that the left vertical map is a homotopy equivalence, it
suffices to show that the induced map on fibres over a point (x, y) ∈ C� ×C� is a homotopy
equivalence as well. For this, we observe that the diagram

(
1
)

1

× ×

is a pullback, since the right vertical functor is conservative by Theorem 2.2.1 so that we can
allude to Exercise 78. Now the fibre of the respective horizontal maps in the above square
over the point (x, y), respectively over the point (px, py), is given by the corresponding
mapping space, which establishes the remaining claim.

Next, we deal with the case X = In, i.e., the n-dimensional spine. We will prove that the
map

(CI n

)� → (DI n

)�

is a homotopy equivalence by induction on n. The case n = 1 was done in the previous step.
Now we claim that there is a pullback diagram as follows:

( In
) ( In−1

)

(
1
)

Since In = In−1��1, the diagram is a pullback before applying groupoid cores, and the two
maps with target C are isofibrations (because C is an ∞-category and the map C → �0 is an
isofibration). As in the proof of Corollary 2.2.7, it hence suffices to observe that the pullback
of groupoid cores is itself an ∞-groupoid. But this is the case, because the right vertical map
is a Kan fibration (since it is an isofibration before applying the groupoid core). The map
C → D induces a map from this square to the corresponding square where C is replaced by
D throughout. On all spots except the top-left spot, this map is a homotopy equivalence by
the inductive assumption. Therefore, we can conclude the claim by Lemma 2.3.16.

Next, we deal with the case X = �n. For this, we consider the diagram

(
n
) (

n
)

( In
) ( In

)
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induced by the functor C → D and the inclusion In → �n. By the previous step, the
lower horizontal map is a homotopy equivalence, and by Theorem 1.3.37 the vertical maps
are trivial fibrations before applying the groupoid core, and thus remain trivial fibrations
after applying the groupoid core. (The square obtained by restricting to groupoid cores is
a pullback, since trivial fibrations are conservative.) Since trivial fibrations are homotopy
equivalences, we conclude the claim by the 3-for-2 property for homotopy equivalences.

Next we deal with an arbitrary but finite-dimensional simplicial set X. We prove the
statement by induction over the dimension. For 0-dimensional X, it follows again from the
fact that products of Joyal equivalences are Joyal equivalences. Let us prove the inductive
step and assume that X is an n-dimensional simplicial set. Consider its skeletal pushout

n skn−1(X)

n X

which induces a pullback square

( X) ( skn−1(X))

(
n
) (

n
)

where the lower horizontal map is a product of Kan fibrations, and hence itself a Kan
fibration. We conclude this case by Lemma 2.3.16.

In order to prove the general case, we now write an arbitrary simplicial set X as the N-
indexed colimit over its skeleta. We then obtain an isomorphism

(CX)� ∼= lim
n

(Cskn(X))�,

and all transition maps in the diagram describing the inverse limit are Kan fibrations
(since they are restrictions along monomorphisms). We conclude the claim by using
Lemma 2.3.17. ��

2.4 Localizations

In this section, we want to study a further construction of ∞-categories which will
play a role later as well, namely by universally inverting a chosen set of morphisms
into a given ∞-category. Such a construction is called a Dwyer–Kan localization
and appears in many contexts of mathematics. Universally inverting morphisms in
the context of ordinary category theory has been known to be fruitful for a long
time; getting a concrete handle on the localization, however, is typically hard. The
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same holds true in the context of ∞-categories, and we will discuss particularly nice
Dwyer–Kan localizations called Bousfield localizations in the later Sect. 5.1.

Definition 2.4.1
Let C be an∞-category and let S ⊆ C1 be a subset of the morphisms of C. For an auxiliary
∞-category D, we let FunS(C,D) ⊆ Fun(C,D) be the full subcategory consisting of
those functors f : C → D such that f (S) ⊆ D�, i.e., where f maps the morphisms
of S to equivalences in D. If S consists of all morphisms, we will write Fun�(C,D) for
FunC1 (C,D).

Definition 2.4.2
Let C be an ∞-category and let S ⊆ C1 be a subset of the morphisms of C. A functor
C → C[S−1] is called a Dwyer–Kan localization of C along S, if for every auxiliary
∞-category D, the restriction functor

Fun(C[S−1],D) −→ Fun(C,D)

is fully faithful and its essential image consists of those functors that send S to
equivalences.

Remark 2.4.3
By Theorem 2.3.20, this definition is equivalent to saying that the restriction functor
factors through a Joyal equivalence Fun(C[S−1],D) → FunS(C,D).

Lemma 2.4.4
If a localization exists, then it is uniquely determined up to Joyal equivalence.

Proof Let i : C → X and j : C → Y be localizations of C along S. By the universal property,
we obtain a diagram

X Y

i

j

F

G

where F is a functor such that Fi � j and G is a functor such that Gj � i. We want to show
that FG � idY and that GF � idX . By the universal property, it suffices again to show that
these equations hold after precomposition with j and i, respectively. There, we find that

FGj � Fi � j,
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and likewise that

GFi � Gj � i.

��

In order to prove that localizations exist, we first need the following lemma.

Lemma 2.4.5
The map �1 → J is a localization at the unique morphism from 0 to 1.

Proof Let D be an ∞-category. We already know that the restriction map factors as follows:

Fun(J,D) → Fun�(�1,D) ⊆ Fun(�1,D)

Now we need to show that the first map is a Joyal equivalence. We will show that it is in fact a
trivial fibration and then conclude the lemma using Proposition 2.2.12. For this, we consider
a filtration Fk(J ) of J with F1(J ) = �1. In order to define Fk(J ) for k > 1, we consider the
non-degenerate k-simplex νk : �k → J given by the string of composable morphisms

0 → 1 → 0 → . . . ,

and we let Fk(J ) be the smallest sub-simplicial set of J which contains this k-simplex.
Note that ν1(�

1) ⊆ J is the canonical inclusion. In addition, for each k ≥ 2, we have that
νk(�

{0,1}) = ν1(�
1) ⊆ J . We claim that there is a pushout diagram as follows:

k
0 Fk−1(J )

k Fk(J )

In order to prove this, we observe that clearly the image of νk ∪ Fk−1(J ) equals Fk(J ). It
then suffices to see that their intersection is given by �k

0. For this, we consider the composite
�[k]\{i} → �k → Fk(J ). For i = 0, it is given by the sequence of k − 1 composable maps

1 → 0 → 1 → . . . ,

which is not contained in Fk−1(J ). However, if i �= 0, then it is given by a sequence starting
with 0 of length k − 1 and is hence contained in Fk−1(J ) by definition.

We want to show that the map

Fun(J,D) → Fun�(�1,D)
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is a Joyal equivalence. This map factors as follows:

Fun(J,D) → Fun�1
(Fk(J ),D) → Fun�1

(Fk−1(J ),D) → Fun�(�1,D)

We will show that the map in the middle is a trivial fibration for all k ≥ 2. Then it follows
that the map

Fun(J,D) ∼= lim
k

Fun�1
(Fk(J ),D) → Fun�(�1,D)

is also a trivial fibration and hence a Joyal equivalence. We thus need to show that for every
commutative diagram

n Fun
1
(Fk(J ), ) Fun

1 k, )

0 n Fun
1
(Fk−1(J ), ) Fun

1 k
0, )

x

there exists a dashed arrow which makes everything commute. We claim that it suffices to
find a dotted arrow: It is clear that the right square is a pullback if we drop the superscript
�1, so that the pullback consists of all functors Fk(J ) → D whose restriction to �k sends
�1 to an equivalence. This shows that the right square is a pullback.

By adjunction, this lifting problem corresponds to the lifting problem

1 k
0 Fun n, )

k Fun n, )

evx

and we observe that the top horizontal composite is an equivalence for every object x of
�n. Therefore, the dashed arrow exists by Joyal’s extension theorem, because the right
vertical map is an inner fibration and the functor Fun(�n,D) → ∏

x

D is conservative by

Theorem 2.2.1. ��

Lemma 2.4.6
For every ∞-category C, there exists a localization along all morphisms of C.
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ProofWe first construct an anodyne map f : C → X to a Kan complex (an ∞-groupoid) X,
by letting Y be the pushout

α∈ 1

1

α∈ 1

J Y

f

Since �1 → J is anodyne (this follows from the proof of Lemma 2.4.5), it follows that f

is indeed anodyne. Then we take an inner-anodyne map g : Y → X with X an ∞-category:
By the small object argument, we can factor the map Y → ∗ through an inner-anodyne map
followed by an inner fibration. Since g is inner-anodyne, the composite gf is anodyne. We
claim that X is in fact an ∞-groupoid. For this, we need to show that its homotopy category
is a groupoid.

Since the map Y → X is inner-anodyne, it is a Joyal equivalence, and thus induces an
equivalence on homotopy categories. Furthermore, taking homotopy categories is left-adjoint
to the nerve functor, and hence preserves pushouts, so that there is a pushout of categories

α∈ 1[1] h

α∈ 1J hY

Therefore, hY is obtained from hC by inverting all morphisms in C (Exercise 96). In
particular, it is a groupoid, and thus hX is a groupoid as well.

Finally, we claim that, for every ∞-category D, the restriction functor Fun(X,D) →
Fun(C,D) factors through a trivial fibration

Fun(X,D) → Fun�(C,D).

Since trivial fibrations are Joyal equivalences by Proposition 2.2.12, the map C → X is a
localization.

It is clear that Fun(X,D) → Fun(C,D) factors through Fun�(C,D), since the fact that
X is an ∞-groupoid implies that every morphism in Cmaps to an equivalence in X. The map
of interest now factors as

Fun(X,D) → Fun(Y,D) → Fun�(C,D) ⊆ Fun(C,D).
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The first map is a trivial fibration by Theorem 1.3.37, part (2), since Y → X is an inner
fibration. The second map sits inside a diagram

Fun(Y, ) Fun ( , ) Fun( , )

α∈ 1

Fun(J, )
α∈ 1

Fun 1, )
α∈ 1

Fun 1, )

where the big square is a pullback by definition of Y , and the right square is a pullback by
closer inspection. It follows that the left square is a pullback as well. By Lemma 2.4.5, the
left lower horizontal map is a trivial fibration, thus the same applies to the upper horizontal
map. This finishes the proof of the lemma. ��

Remark 2.4.7
We will see later that the association of sending C to the localization along all
morphisms is a left adjoint to the inclusion of ∞-groupoids into ∞-categories (as ∞-
functors between ∞-categories), see Proposition 5.1.12.

Proposition 2.4.8
For every S ⊆ C1, there exists a localization of C along S.

Proof For every subset S ⊆ C1, there is a smallest subcategory CS of C which contains
S: This is clear for categories, and the statement for our case follows by pulling back the
corresponding subcategory of the homotopy category of C. It follows easily that a localization
of C along CS is a localization of C along S, see also Exercise 93.

We thus take a localization of CS along all morphisms, more precisely an inner-anodyne
map CS → X to an ∞-groupoid X as in Lemma 2.4.6. Then we consider the pushout

S

X W

and an inner-anodyne map g : W → D with D an ∞-category. Then, for an auxiliary ∞-
category E, we consider the diagram

Fun( , ) Fun(W, ) FunS( , )

Fun(X, ) FunS( S, )

g∗
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and we claim that the right-hand square is a pullback diagram: For this, it suffices to observe
that every functor W → E sends the morphisms in the image of S to equivalences, which
follows from the fact that they are sent to equivalences in X. Moreover, the lower horizontal
map is a trivial fibration by the previous step, thus the upper horizontal map is also a trivial
fibration. The map g∗ is a trivial fibration, since W → D is inner-anodyne. Therefore, the
upper composite is a trivial fibration, and thus a Joyal equivalence. This shows that the map
C → D is a localization along S. ��

Apart from the fact that the procedure of “universally inverting” morphisms
produces many interesting examples of ∞-categories (even if the category that we
start out with is an ordinary category), we will use it in Lemma 2.4.12 to prove a
certain factorization property of functors between ∞-categories.

ExampleConsider the 1-category Cat1∞ of ∞-categories, i.e., the full subcategory of
sSet whose objects are the ∞-categories. Recall that the ∞-category Cat∞ of ∞-
categories is given by the homotopy-coherent nerve N(Cat1∞) of this category, with
its canonical Kan enrichment given by Fun(C,D)�. The identity of Cat1∞ canon-
ically refines to a functor between simplicial categories, with constant simplicial
enrichment on the domain and the canonical simplicial enrichment on the target. In
other words, we obtain a canonical functor of ∞-categories

Cat1∞ −→ Cat∞.

This functor sends Joyal equivalences to equivalences: By definition, a Joyal
equivalence is a map of ∞-categories which becomes an equivalence in the ∞-
category Cat∞, see Definition 2.1.14. It follows that this functor induces a functor

Cat1∞[Joy−1] −→ Cat∞

where Joy denotes the set of Joyal equivalences.

ExampleLikewise, there is a canonical functor Kan −→ Ŝpc which sends homotopy
equivalences to equivalences in Ŝpc. Hence, there is an induced functor

Kan[he−1] −→ Ŝpc,

where he denotes the (large) set of homotopy equivalences between Kan complexes.
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Lemma 2.4.9
The inclusions Kan → sSet and Cat1∞ → sSet induce equivalences

Kan[he−1] � sSet[we−1] and Cat1∞[Joy−1] � sSet[Joy−1].

Proof The small object argument provides functors F : sSet → Cat1∞ and G : sSet → Kan
by functorially factoring the map X → ∗ into an inner-anodyne map followed by an
inner fibration, respectively by an anodyne map followed by a Kan fibration. We claim that
these functors send Joyal equivalences to Joyal equivalences, respectively weak homotopy
equivalences to weak homotopy equivalences. In order to see this, suppose that X → Y is
such an equivalence. Then we have a commutative diagram

X

Y

where the horizontal maps are inner-anodyne and hence Joyal equivalences. By the 3-for-
2 property for Joyal equivalences, we find that C → D is a Joyal equivalence if and only
X → Y is a Joyal equivalence. The argument for weak homotopy equivalences is the same.
Hence this functor induces a functor

sSet[Joy−1] −→ Cat1∞[Joy−1],

which we claim to be an inverse to the canonical functor

Cat1∞[Joy−1] −→ sSet[Joy−1]

as induced by the inclusion.
For this, we observe that the map X → C = F(X) determines a natural transformation

from the identity of sSet to the composite iF : sSet → sSet. More precisely, it determines a
map

�1 −→ Fun(sSet, sSet) −→ Fun(sSet, sSet[Joy−1])

which we claim to land inside the full subcategory consisting of those functors that send
Joyal equivalences to equivalences: This is because F (and clearly i as well) send Joyal
equivalences to Joyal equivalences, as we had just argued. Hence, by the universal property
of localizations, we obtain a map

�1 −→ Fun(sSet[Joy−1], sSet[Joy−1])



140 2 Joyal’s Theorem, Applications, and Dwyer–Kan Localizations

whose restriction to 0 and 1 is given by the identity and a functor whose restriction to sSet is
induced by the composite Fi. For a fixed object X ∈ sSet, the resulting morphism is given
by X → F(X), which we argued to be a Joyal equivalence. In particular, the 1-simplex given
above is a natural equivalence between the identity of sSet[Joy−1] and the functor induced
by Fi.

It remains to show that the functor induced by the composite iF is an equivalence as
well. For this, we use analogous arguments to find that the map X → FX induces a
transformation id → iF which is pointwise a Joyal equivalence. This shows the corollary
for Joyal equivalences, and the argument for weak homotopy equivalences is the same. ��

The following theorem is very important, but beyond the scope of this book.
A similar result holds in general for simplicial model categories, see [Lur17,
Theorem 1.3.4.20]. We will discuss some steps of the proof of this result later, see
Corollary 3.2.26.

Theorem 2.4.10
The canonical functors sSet[we−1] → Spc and sSet[Joy−1] → Cat∞ are equivalences
of ∞-categories.

We finish this section with a useful factorization construction.

Definition 2.4.11
Let f : C → D be a functor between ∞-categories. We define the path-fibration P(f ) of
f by the pullback

P(f ) Fun(J, )

s

f

of simplicial sets, where s is the source map.

Consider the map C → Fun(J,D), which is adjoint to the map C×J → C → D.
It sends an object x to the identity morphism of f (x). Clearly, the composition of
this functor with s is given by f , therefore we obtain an induced map c : C →
P(f ) which is a section of the canonical map P(f ) → C. In particular, c is a
monomorphism. Furthermore, the composite of P(f ) → Fun(J,D) with the target
map Fun(J,D) → D yields a composite

C
c→ P(f )

t→ D.

This composite is given by f , so we gained a factorization of f through P(f ).
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Lemma 2.4.12
Let f : C → D be a functor between ∞-categories and let C

c→ P(f )
t→ D be

the factorization which we just constructed. Then c is a Joyal equivalence and t is an
isofibration. In particular, any map f : C → D between ∞-categories can be factored
into a Joyal equivalence which is a monomorphism, followed by an isofibration.

Proof We claim that the source map s : Fun(J,D) → D is a trivial fibration. By
Lemma 2.2.17, it suffices to show that it is a Joyal equivalence and an isofibration.
There are many arguments that �0 → J is a Joyal equivalence (e.g., both are ordinary
categories and the functor is clearly an equivalence of ordinary categories), so it follows
from Proposition 2.2.8 that the induced map Fun(J,D) → Fun(�0,D) ∼= D is a Joyal
equivalence as well. By Proposition 2.2.5, the restriction along a monomorphism which
maps into an ∞-category is an isofibration, so we conclude that Fun(J,D) → D is a trivial
fibration as claimed. Thus, as a pullback of this map, the functor P(f ) → C is also a trivial
fibration. Since the composite

C → P(f ) → C

is the identity (by construction), it follows from the 3-for-2 property for Joyal equivalences
that the map C → P(f ) is a Joyal equivalence as claimed.

In order to see that P(f ) → D is an isofibration, we observe that the square

P(f ) Fun(J, )

× ×f×id

is also a pullback and that, again by Proposition 2.2.5, the right vertical map is an isofibration.
It follows that P(f ) → C × D is an isofibration as well, see Corollary 2.1.22. Since the
projection C × D → D is also an isofibration, the lemma is proven. ��

2.5 Fat Joins, Fat Slices andMapping Spaces

In this section, we will construct an alternative join and show that it is Joyal-
equivalent to the construction of Definition 1.4.8, again following Rezk’s notes
[Rez20]. This result is then used to compare different models of mapping spaces
in an ∞-category. We will also derive some more useful lifting properties for
isofibrations. Fat joins and fat slices will also turn out to be particularly useful
for discussing limits and colimits in ∞-categories. We will finish the section with
a comparison between the mapping spaces in the coherent nerve of a simplicial
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category and the hom-simplicial sets present in the simplicial category, although
without proof.

Definition 2.5.1
Let X and Y be simplicial sets. We define a new simplicial set X � Y to be the pushout

X × Y × 1 X Y

X × Y × 1 X Y

where the top horizontal arrow sends the triple (x, y, 0) to x and the triple (x, y, 1) to y.
This simplicial set is called fat join.

Lemma 2.5.2
For fixed Y , the association X �→ X�Y extends to a colimit-preserving functor sSet →
sSetY/. The same holds for the association X �→ Y � X.

Proof The first statement is an easy calculation: We need to check that for any morphism
X → X′, the diagram

Y X Y

X Y

commutes. But this follows simply from the fact that the diagram

Y X Y

X Y

commutes. In order to see that this functor commutes with colimits, it again suffices to show
that it commutes with coproducts and coequalizers. So let X,X′ and Y be simplicial sets. We
need to show that the diagram

Y X Y

X Y (X X ) Y
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is a pushout in simplicial sets. But this follows immediately from the definition. Next, we
recall that coequalizers in sSetY/ are calculated via the forgetful functor sSetY/ → sSet, see
Lemma 1.4.14. So let

X X ′ C

be a coequalizer diagram. We need to show that applying − � Y yields again a coequalizer
diagram. Then the functors −×Y ×∂�1 and −×Y ×�1 are left-adjoint and hence preserve
this coequalizer diagram. The diagram

X Y X Y C Y

is indeed a coequalizer: Given a map X′ �Y → T whose precomposition with the two given
maps leads to the same map X�Y → T , we find that there is a unique map from C to T and
from Y to T as needed. Now since two colimits always commute, we may take the pushout
over the coequalizers and obtain the coequalizer of the pushout. This proves the lemma. ��

Observation 2.5.3
There exists a canonical map of simplicial sets X � Y → �1 induced by the
commutative diagram

X × Y × 1 X Y

X × Y × 1 1pr

where the right vertical map is given by X → �{0}, combined with Y → �{1}.

Lemma 2.5.4
Let X and Y be simplicial sets. Then there exists a canonical map X � Y → X � Y

which commutes with the projections to �1 and the inclusions of X and Y . This map is
functorial in X and Y .

Proof Recall from Lemma 1.4.10 that for every map p : K → �1 of simplicial sets, there
exists a canonical factorization intoK → K0�K1 → �1, where Ki = p−1({i}). By applying
this result to the map X � Y → �1 which we have just constructed, we find that (X � Y)0 is
given by the pushout

X × Y × {0} X

X × Y × {0} X
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and likewise that (X � Y)1 is given by Y . ��

We will now need Lemma 2.3.14 (Reedy’s lemma) in the following context.

Proposition 2.5.5
Consider a pullback diagram of ∞-categories

f

p p

f

where the map p is an isofibration and the map f ′ is a Joyal equivalence. Then the
map f is also a Joyal equivalence.

ProofWe will show that for every ∞-category E, the induced map

π0(Fun(E,C)�)
f∗−→ π0(Fun(E,D)�)

is a bijection. Once this is shown, we can choose E = D and find a functor g : D → C such
that f∗(g) = fg � idD. It is then easy to see that g is an inverse of f .

In order to show that f∗ above is indeed a bijection, observe that the diagram

Fun( , ) Fun( , )

Fun( , ) Fun( , )

is a pullback diagram of Kan complexes, where the right vertical map is a Kan fibration
and the lower horizontal map is a homotopy equivalence. In Lemma 2.3.14, we have shown
that this implies that the top horizontal arrow is also a homotopy equivalence, and hence in
particular induces a bijection on path components. ��

Remark 2.5.6
In fact, in the proof of Lemma 2.3.14, we have explicitly shown that in the situation of
a pullback diagram of Kan complexes

C ×A B B

C A

(continued)
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2.5.6 (continued)
such that the map B → A is a Kan fibration and the map C → A is a homotopy
equivalence, the induced map π0(C ×A B) → π0(B) is bijective, which is all that we
have used in the above argument.

Lemma 2.5.7
Consider a diagram of ∞-categories

where the vertical maps are Joyal equivalences and the left horizontal maps are
isofibrations. Then the induced map on pullbacks

C ×D E → C′ ×D′ E′

is again a Joyal equivalence.

Proof Copying the proof of Lemma 2.3.16, we again first explain how to reduce the proof to
the case where the two maps E → D and E′ → D′ are also isofibrations. Here, we simply
factor the maps functorially, as in Lemma 2.4.12, into a monomorphism which is a Joyal
equivalence followed by an isofibration, and we obtain a diagram

where all vertical maps are Joyal equivalences. Note that P and P′ are also ∞-categories. We
then obtain a commutative diagram
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and we claim that its vertical maps are Joyal equivalences: For instance, the left vertical map
sits inside a diagram

where both squares are pullbacks. We may thus apply Proposition 2.5.5 to the left square.
(The argument for the right vertical map above is the same.)

By now, we have reduced the proof to the case where all horizontal maps in the diagram
of the statement of the lemma are isofibrations.

A threefold application of Proposition 2.5.5 completes the proof as in Lemma 2.3.16, by
considering the following factorization of the map in question:

C ×D E → (C′ ×D′ D) ×D E ∼= C′ ×D′ E → C′ ×D′ E′.

��

Corollary 2.5.8
Suppose to be given a diagram of simplicial sets

X Y Z

X Y Z

where all vertical maps are Joyal equivalences and the left horizontal maps are
monomorphisms. Then the induced map

X �Y Z → X′ �Y ′ Z′

is again a Joyal equivalence.

Proof Let C be an ∞-category. By definition, we need to show that the map

Fun(X′ �Y ′ Z′,C) → Fun(X �Y Z,C)

is a Joyal equivalence. But this map is isomorphic to the map

Fun(X′,C) ×Fun(Y ′,C) Fun(Z
′,C) → Fun(X,C) ×Fun(Y,C) Fun(Z,C)

which is a Joyal equivalence by Lemma 2.5.7 and the assumptions. ��
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Corollary 2.5.9
For all monomorphisms A → B, the pushout product map

J × A �{0}×A {0} × B −→ J × B

is a Joyal equivalence.

ProofWe consider the following diagram:

{0} × A {0} × B

J × A J × A {0}×A {0} × B

J × B

The horizontal arrows are monomorphisms, and both the left vertical arrow and the right
bended arrow are Joyal equivalences: This is because {0} → J is a Joyal equivalence
and Joyal equivalences are closed under finite products, as shown in Exercise 101. By
Corollary 2.5.8, the right vertical map is also a Joyal equivalence, therefore the lemma
follows from the 3-for-2 property for Joyal equivalences. ��

Definition 2.5.10
A map of simplicial sets is called J -anodyne if it belongs to the saturated set generated
by inner-anodyne maps and maps of the form J × A �{0}×A {0} × B −→ J × B for a
monomorphism A → B.

Corollary 2.5.11
Every J -anodyne map is a Joyal equivalence.

Proof We claim that monomorphisms which are in addition Joyal equivalences form a
saturated set. We leave the proof of this claim as Exercise 102. It then suffices to note that
inner-anodyne maps are Joyal equivalences (by Corollary 2.2.13) and that maps of the form
J × A �{0}×A {0} × B −→ J × B are also Joyal equivalences (by Corollary 2.5.9). ��

Next, we can use Corollary 2.5.11 to provide a smaller generating set for J -
anodyne maps, all of whose domains are finite simplicial sets. This will help us
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to apply the small object argument as presented in this book, since it needs this
technical assumption.

Proposition 2.5.12
The set of J -anodyne maps is the smallest saturated set containing inner-anodyne maps
and the map {0} → J .

Proof For notational convenience, let us call the smallest saturated set containing inner-
anodyne maps and the map {0} → J the set of super-J-anodyne maps. It is clear that
super-J -anodyne maps are J -anodyne, so it suffices to show that, for all monomorphisms
A → B, the pushout product map

{0} × B �{0}×A J × A → J × B

is super-J -anodyne. The set of monomorphisms A → B for which this is the case is itself
saturated, therefore it suffices to show the claim for A → B being the boundary inclusions
∂�n → �n for n ≥ 0. For this purpose, we use the small object argument for the set of super-
J -anodyne maps and obtain the following factorization of the map which we are interested
in:

{0} × �n �{0}×∂�n J × ∂�n i→ C
p→ J × �n

where i is super-J -anodyne and the second map satisfies the RLP with respect to inner horn
inclusions and {0} → J . Since J × �n is an ∞-category, we can deduce that the map
C → J × �n is an isofibration between ∞-categories. Since J -anodyne maps are Joyal
equivalences by Corollary 2.5.11, and since super-J -anodyne maps are J -anodyne, we find
that the map C → J ×�n is in fact a trivial fibration and thus admits a solution s : J ×�n →
C to the lifting problem

{0} × n {0}× n J × n

J × n J × n

i

p
s

Considering the diagram

{0} × n {0}× n J × n J × n

{0} × n {0}× n J × n

{0} × n {0}× n J × n J × n

s

i

p



2.5 Fat Joins, Fat Slices and Mapping Spaces 149

we find that the map that we are interested in is a retract of the super-J -anodyne map i, and
hence it is itself super-J -anodyne. ��

If the target of a monomorphism is an ∞-category, then we can prove the
following stronger version of Corollary 2.5.11.

Proposition 2.5.13
Let i : A → B be a monomorphism with B an ∞-category. Then i is J -anodyne if and
only if i is a Joyal equivalence.

ProofBy Corollary 2.5.11, it suffices to show the “if” part. For this, we apply the small object
argument and factor the map A → B into a composition

A → B′ → B

where the map A → B′ is J -anodyne and the map B′ → B satisfies the RLP with respect
to J -anodyne maps. Since B is an ∞-category, the same applies to B′ and the map B′ → B

is an isofibration. By Corollary 2.5.11 and the 3-for-2 property for Joyal fibrations, the
map B′ → B is an isofibration and a Joyal equivalence, and thus a trivial fibration by
Lemma 2.2.17. Choosing a solution s : B → B′ of the lifting problem

A
s

we find, as in the proof of Proposition 2.5.12, that the map A → B is a retract of the J -
anodyne map A → B′, and thus is itself J -anodyne. ��

At a later stage of the book (when we show that the association x �→ mapC(x,−)

is itself functorial in x, and in the analogue of Theorem 1.4.23 for the fat slices), we
will need the following theorem. Thanks to Hoang Kim Nguyen for the explanation
of the needed reduction steps!

Theorem 2.5.14
Let p : C → D be an isofibration between ∞-categories and let A → B be a
monomorphism which is in addition a Joyal equivalence. Then any lifting problem

A

B

p

admits a solution as indicated by the dashed arrow.
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ProofUsing the small object argument, we can factor the map B → D through an J -anodyne
map B → B followed by a map B → D satisfying the RLP with respect to J -anodyne
maps. It follows that B is an ∞-category. Since J -anodyne maps are Joyal equivalences,
we find that the composite A → B is a monomorphism and a Joyal equivalence. By
Proposition 2.5.13, this map is J -anodyne. Since isofibrations between ∞-categories have
the RLP with respect to J -anodyne maps, we can find a dashed arrow in the diagram

A

B

which also solves the original lifting problem. ��

Let us finish this intermezzo on J -anodyne maps with a nice fact about
inner-anodyne maps. The following lemma is taken from Stevenson [Ste18a,
Lemma 2.19].

Lemma 2.5.15
Let C be an ∞-category and let i : A → C be a monomorphism which is a bijection on
0-simplices and a Joyal equivalence. Then i is inner-anodyne.

Proof By the small object argument, we may factor this map into a composite A
j→ B

p→ C,
with j an inner-anodyne map and p an inner fibration. Since C is an ∞-category, p satisfies
the assumptions of Exercise 104 and is therefore a trivial fibration. As in the proof of
Proposition 2.5.13, this shows that i is a retract of j and thus inner-anodyne as well. ��

Corollary 2.5.16
Let K → L be a monomorphism which is a bijection on 0-simplices. Then the map

{0} × L �{0}×K J × K → J × L

is inner-anodyne.

Proof It suffices to prove the claim for the maps ∂�n → �n with n ≥ 1. By construction,
this map is a bijection on 0-simplices, a Joyal equivalence by Corollary 2.5.9, and has an ∞-
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category as target, because �n and J are ∞-categories. Applying Lemma 2.5.15 concludes
the corollary. ��

Now we come back to important properties of fat joins and its relation to the
ordinary join from Sect. 1.4.

Corollary 2.5.17
Let X → X′ be a Joyal equivalence between simplicial sets and let Y be a simplicial
set. Then the map X �Y → X′ �Y is a Joyal equivalence. Likewise, the map Y � X →
Y � X′ is a Joyal equivalence.

Proof Since X � Y is the pushout

X × Y × 1 X Y

X × Y × 1 X Y

where the left vertical map is a monomorphism, it suffices by Corollary 2.5.8 to show that the
maps induced by X → X′ on the other three corners are Joyal equivalences. But this follows
from Exercise 101. ��

Definition 2.5.18
A map of simplicial sets f : X → Y is said to admit a pre-inverse if maps g : Y → X,
τ : �1 → Hom(X,X) and τ ′ : �1 → Hom(Y, Y ) exist such that

(1) τε = idX and τ1+ε = gf , where ε ∈ {0, 1} ∼= Z/2,
(2) τ ′

ε = idY and τ ′
1+ε = fg, where again ε ∈ {0, 1} ∼= Z/2,

(3) for all objects x of X, the morphism τ(x) : �1 → X represents a degenerate edge of
X, and for all objects y of Y , τ ′(y) : �1 → Y represents a degenerate edge of Y .

Proposition 2.5.19
Let X and Y be simplicial sets. Then the canonical map X�Y → X�Y of Lemma 2.5.4
is a Joyal equivalence.

Proof As noted in Lemmas 2.5.2 and 1.4.15, both functors − � Y and − � Y commute with
filtered colimits. Also, when viewed as taking values in sSetY/, they both commute with
coproducts. We may therefore reduce the general situation to the case where X has only
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finitely many non-degenerate simplices and is connected. In this case, we can write X as a
pushout X′ �∂�n �n. Since pushouts are connected colimits, we also obtain isomorphisms

X � Y ∼= X′ � Y �∂�n�Y �n � Y

and likewise for � instead of �. It hence suffices to show the claim for X′, ∂�n and �n. By
the same reasoning, the statement for �n (for all n) implies the statement for ∂�n and X′ by
induction. Hence it remains to show that

�n � Y → �n � Y

is a Joyal equivalence. Now the inclusion In → �n is inner-anodyne by Proposition 1.3.22,
and thus in the diagram

In Y In

n n

both vertical maps are Joyal equivalences: For the left vertical map, this is Corollary 2.5.17,
and for the right vertical map, it is the fact that − � Y preserves inner-anodyne maps, see
Lemma 1.4.22, part (1). (In fact, it even sends right-anodyne maps to inner-anodyne maps.)
Therefore, it suffices to prove the statement for In. Since In ∼= In−1 ��0 �1, it finally
suffices to treat the case where X is either �0 or �1. Now we observe that �0 is a retract of
�1, therefore the map

�0 � Y → �0 � Y

is a retract of the map

�1 � Y → �1 � Y.

Since retracts of Joyal equivalences are Joyal equivalences (see Exercise 102), it suffices to
show that the latter is a Joyal equivalence for all Y . Performing the same reductions to Y , it
finally suffices to show that the map

�1 � �1 → �1 � �1 ∼= �3

is a Joyal equivalence. In order to do so, we will (almost) construct a pre-inverse for this
map. In fact, we will construct a zig-zag of such pre-inverses connecting the identity to a to-
be-constructed inverse. In order to construct this map, we first observe from the definitions
that there is a canonical quotient map (�1)×3 → �1 � �1. We claim that the composite

can : (�1)×3 → �1 � �1 → �3
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is given by the formula

(a, b, c) =
⎧
⎨

⎩

a if c = 0,

b + 2 if c = 1.

This is just an explicit check of the definitions. Then we consider the 3-simplex σ of (�1)×3

represented by

(000) → (100) → (101) → (111)

and its image in �1 � �1. First, we observe that the composite

�3 → �1 � �1 → �3

is the identity.
Then we must construct a map �1 → Hom(�1 ��1,�1 ��1) which exhibits the map σ

as pre-inverse of the canonical map �1 � �1 → �3. We will do this in three steps: First, we
will construct two maps �1 → Hom((�1)×3, (�1)×3) connecting the identity to an auxiliary
map 
 and 
 to σ ◦can; secondly, we will show that they descend to maps between �1 ��1;
and finally, we will show that both resulting maps have the property that for fixed object, the
induced edge of �1 � �1 is a degenerate edge.

In the following picture, the left cube represents the identity of (�1)3, the middle cube
represents the map 
, and the right cube represents the composite σ ◦ can. Note that there
are evident maps from the middle cube to both outer cubes.

011 111 011 111 111 111

010 110 000 100 000 100

001 101 001 001 101 101

000 100 000 100 000 100

Now one needs to check that these maps descend, after post-composition with the projection,
to the quotient �1 � �1. For this, we first observe that all cubes restrict to endomorphisms
of �1 × �1 × ∂�1. More concretely, this means that if we only look at the front layer
and the back layer (i.e., we neglect the diagonal maps) and project to the third coordinate,
only identity morphisms remain. Next, we find that there exist compatible endomorphisms
of �1 � �1, since the identity of �1 � �1 is compatible for both 
 and σ ◦ can. This shows
that 
 and σ ◦ can descend to the pushout �1 � �1.

Alternatively, one sees that �1 � �1 is the quotient of (�1)×3, where the sub-simplicial
set �1 × �1 × {0} is collapsed (via the first projection) to �1 and the sub-simplicial set
�1 ×�1 ×{1} is collapsed (via the second projection) to �1. We thus have to check if 
 and
σ ◦ can followed by this projection are suitably invariant, i.e., if they satisfy the conditions



154 2 Joyal’s Theorem, Applications, and Dwyer–Kan Localizations

that F(x, y, 0) is independent of y and F(x, y, 1) is independent of x. But this is an explicit
check.

Next, we observe that any morphism in �1 × �1 × ∂�1 which is mapped to an identity
(a degenerate edge) of �1 � �1 is also mapped to a degenerate edge in �1 � �1. This shows
that all maps from the middle cube to the left and right cube are degenerate edges in �1 ��1,
which implies that the horizontal maps between the cubes also descend to 1-simplices of
Hom(�1 � �1,�1 � �1), and furthermore that, for any object x of �1 � �1, these maps are
degenerate. This finally implies that the map σ is a pre-inverse to the map can. ��

Corollary 2.5.20
Let X → X′ be a Joyal equivalence and Y be a simplicial set. Then the map X � Y →
X′ � Y is again a Joyal equivalence.

Proof In the commutative diagram

X Y X Y

the top horizontal map is a Joyal equivalence by Corollary 2.5.17, and the vertical maps are
Joyal equivalences by Proposition 2.5.19. ��

Definition 2.5.21
Let p : Y → W be an object of sSetY/. We define the fat slice of p to be the simplicial set
Wp/ defined by

(Wp/)n = HomsSetY/
(Y � �n,W),

and the simplicial set W/p to be given by

(W/p)n = HomsSetY/ (�
n � Y,W).

Lemma 2.5.22
The functor sSetY/ → sSet given by sending p : Y → W to W/p is right-adjoint to the
functor − � Y . Likewise, the functor p �→ Wp/ is right-adjoint to the functor Y � −.
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Proof By definition, the adjunction bijection holds for representables, and hence for all
simplicial sets, since the functors − � Y and Y � − preserve colimits by Lemma 2.5.2. ��

Lemma 2.5.23
Let Y be a simplicial set and p : Y → W a map of simplicial sets. Then there are
canonical maps W/p → W/p and Wp/ → Wp/.

ProofOn n-simplices, we have to provide a map

HomsSetY/ (Y � �n,W) → HomsSet/Y (Y � �n,W).

For this, it suffices to recall that there is a map Y � �n → Y � �n in sSetY/ which is natural
with respect to maps in the simplex category �. Likewise for the other slice. ��

As a consequence of Theorem 2.5.14, we can establish an analog of Theo-
rem 1.4.23 for fat slices.

Lemma 2.5.24
Let

S
i−→ T

f−→ C
p−→ D

be maps of simplicial sets such that i is a monomorphism and p is an isofibration
between ∞-categories. Then the functor

Cf/ −→ Dpf/ ×Dpf i/ Cf i/

is a left fibration. Likewise, the functor

C/f −→ D/pf ×D/pf i C/f i

is a right fibration.

Proof Let A → B be a left-anodyne map and consider a lifting problem

A f/

B pf/ × pf i/
f i/
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By adjunction, this is equivalent to the lifting problem

T A S A S B

T B

where the left vertical map is a monomorphism. We wish to show that it is a Joyal
equivalence, so that we can allude to Theorem 2.5.14 to conclude the lemma. For this
purpose, we claim that in the diagram

T A S A S

T

both horizontal maps are Joyal equivalences: For the lower horizontal map, this is precisely
Proposition 2.5.19; and for the upper horizontal map, we use the fact that these are pushouts
along monomorphisms, so that a 3-fold application of Proposition 2.5.19 together with
Corollary 2.5.8 confirms the claim. Next, we recall from Lemma 1.4.22 that the right vertical
map is inner-anodyne and hence a Joyal equivalence. Again, the argument for the other slice
is the same. ��

Remark 2.5.25
In fact, the conclusion of Lemma 2.5.24 holds more generally if p is replaced by an
inner fibration between arbitrary simplicial sets, see [Ste18b, Theorem 1.2].

Corollary 2.5.26
Let p : Y → C be a diagram with C an ∞-category. Then the functor Cp/ → C is a left
fibration and the functor C/p → C is a right fibration. In particular, both Cp/ and C/p

are ∞-categories.

Proof This is Lemma 2.5.24 for the special case ∅ → Y → C → �0. ��

Proposition 2.5.27
Let p : Y → C be a diagram. Then the canonical functor

Cp/ −→ Cp/

is a Joyal equivalence. The same is true for C/p → C/p.
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Proof We only sketch a proof. The idea is to show that both X � − and X � − are left
Quillen functors and weakly equivalent by Proposition 2.5.19, so that the induced functors
on homotopy categories are isomorphic. Then it follows that the respective right adjoints are
also isomorphic in the homotopy category, which is what we need. For a functor, to be left
Quillen means that it preserves monomorphisms as well as monomorphisms which are also
Joyal equivalences. For monomorphisms, this is clear; and for Joyal equivalences, it follows
from Corollaries 2.5.20 and 2.5.17. Therefore, the respective right adjoints preserve trivial
fibrations and fibrations between ∞-categories. It follows (this is where the proof remains a
sketch) that the two slice functors descend to right adjoints of the two join functors on the
homotopy category associated to the Joyal model structure. From this, we can deduce that the
slice functors, being right-adjoint to the two isomorphic join functors, are also isomorphic. ��

With the help of ordinary slices, one can also define right and left mapping spaces
in an ∞-category.

Definition 2.5.28
Let C be an ∞-category and let x and y be objects of C. We define the right mapping
space by the pullback

mapR(x, y) /y

0 x

and the left mapping space by

mapL(x, y) x/

0 y

Remark 2.5.29
The map mapR

C(x, y) → �0 is a right fibration and the map mapL
C(x, y) → �0 is a

left fibration. By Exercise 84, both are in fact Kan fibrations, so that the left and right
mapping spaces are Kan complexes.

Next, we want to compare these mapping spaces to the mapping space which we
have already defined in Definition 1.3.47. The following lemma will take care of
this.
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Lemma 2.5.30
The following two diagrams are pullback diagrams:

/y Fun 1, ) x/ Fun 1, )

× ×(id,y) (x,id)

Proof We only present the proof for the left square. (The argument for the right square is
similar.) W e have to show that the diagram is a pullback on all n-simplices, so we consider
the following diagram:

Hom/y
n 0, ) Hom n 0, ) Hom n × 0 × 1, )

Hom n, ) Hom n, ) × Hom 0, ) Hom n × 0 × 1, )

0 Hom 0, )

(id,y)

y

In order to show that the big top square is a pullback, notice first that the rightmost square is
a pullback by the very definition of the fat join �n � �0. The lower left square is a pullback
by inspection. The combination of the left two squares is also a pullback by definition. It
follows that the top left square is a pullback. Hence, combining the two top squares, we
obtain a pullback as needed. ��

Passing to fibres, we obtain the following corollary.

Corollary 2.5.31
The following diagrams are pullbacks:

map (x, y) /y map (x, y) x/

0 0x y

We can then use the following lemma to compare the various definitions of
mapping spaces.
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Lemma 2.5.32
Consider a diagram

f

p

p

where p and p′ are isofibrations and where f is a Joyal equivalence. Then, for all
objects x in C, the induced map on fibres Ex → E′

x is also a Joyal equivalence.

Proof This follows immediately from Lemma 2.5.7. ��

Remark 2.5.33
The converse of this statement is not correct (i.e., one cannot deduce that f is a Joyal
equivalence if it is so fibrewise, but see Exercise 134). However, this statement is
true for left and right fibrations (in fact, more generally for cocartesian and cartesian
fibrations, as we will show in Theorem 3.1.27).

Corollary 2.5.34
Let C be an ∞-category and let x and y be objects of C. Then the maps

mapR
C(x, y) → mapC(x, y) ← mapL

C(x, y)

are homotopy equivalences.

ProofApply Lemma 2.5.32 to the diagrams

/y
/y

x/
x/

and use Corollary 2.5.26 and Proposition 2.5.27. ��

Finally, we wish to compare the mapping spaces of the coherent nerve of
a Kan-enriched category with the mapping-Kan-complexes that prevail in the
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simplicial category. The proofs are beyond the scope of this book, see, e.g., [Lur09,
Section 2.2.2]. A direct combinatorial argument for the below theorem was recently
given by Hebestreit and Krause [HK20].

Theorem 2.5.35
Let C be a Kan-enriched category and let x and y be objects of C. Then there is a
canonical map

HomC(x, y) −→ mapN(C)(x, y)

which is a homotopy equivalence. The homotopy class of this map is natural in x and y.

Corollary 2.5.36
Let F : C → C′ be a weak equivalence of Kan-enriched categories. Then the induced
functor N(F) : N(C) → N(C′) is a Joyal equivalence of ∞-categories.

Proof The functor N(F) is essentially surjective if and only if F is weakly essentially
surjective in the sense of Definition 1.2.49. Furthermore, Theorem 2.5.35 shows that F is
weakly fully faithful if and only if N(F) is fully faithful. Hence we conclude the proof by
Theorem 2.3.20. ��

Recall that we defined the simplicial category CW whose objects are CW-
complexes and whose simplicial set of maps is given by S(map(X, Y )). Its coherent
nerve was denoted by Spc. Furthermore, we defined the simplicial category Kan
whose objects are Kan complexes and whose simplicial set of maps is given by the
internal hom-set Hom(A,B). Now we claim that there is a functor CW → Kan
constructed as follows: On objects, it sends X to S(X); and on morphisms, we have
to provide a simplicial map

S(map(X, Y )) −→ Hom(S(X),S(Y ))

which is compatible with composition. By adjunction, this is equivalent to providing
a map

S(map(X, Y )) × S(X) −→ S(Y ).

Next, recall that S is a right adjoint and hence preserves products. It hence suffices
to provide a simplicial map

S(map(X, Y ) × X) −→ S(Y )
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where we can use the ordinary composition map map(X, Y ) × X → Y and apply
the functor S.

Corollary 2.5.37
The previously described functor Spc = N(CW) → N(Kan) = Ŝpc is a Joyal
equivalence.

ProofWe show that the functor CW → Kan is a weak equivalence of simplicial categories.
It is weakly essentially surjective because every Kan complex X is a homotopy equivalence
to S(|X|) and thus, up to equivalence, in the image of the functor CW → Kan. In order to
show that the functor is fully faithful, we have to show that the map

S(map(X, Y )) −→ Hom(S(X),S(Y ))

is a homotopy equivalence. This is the case if and only if the composite

map(X, Y ) −→ |S(map(X, Y ))| −→ |Hom(S(X),S(Y ))|

is a homotopy equivalence. But for this, we can use the fact that, for any two Kan complexes
A and B, the canonical map

|Hom(A,B)| −→ map(|A|, |B|)

is a homotopy equivalence. ��

Corollary 2.5.38
The canonical functor Spc → Cat∞ is fully faithful.

Proof The functor is given by applying the coherent nerve to the functor of simplicial
categories Kan → Cat1∞. Therefore, we only need to show that, for any two Kan complexes
X and Y , the canonical map

Hom(X, Y ) → Fun(X, Y )�

is a homotopy equivalence. In fact, it is an isomorphism of simplicial sets, so the proposition
follows. ��



3(Co)Cartesian Fibrations and the Construction
of Functors

3.1 (Co)Cartesian Fibrations

In this section, we define and discuss the notion of (co)cartesian fibrations and in
particular of p-(co)cartesian morphisms of X, if p : X → Y is an inner fibration
between simplicial sets. (Co)cartesian fibrations are natural generalizations of (left)
right fibrations, and they will be a key player in the straightening-unstraightening
equivalence (which we discuss to some extend only in this book). We will
introduce the notion of a morphism of (co)cartesian fibrations (over a fixed base-
∞-category) and show that among such, equivalences can be detected fibrewise,
i.e., that such a morphism is already an equivalence if its induced functor on each
fibres is an equivalence. In classical category theory, (co)cartesian fibrations are
known as Grothendieck-(op)-fibrations, where they arise, under the Grothendieck-
construction, as associated to (pseudo-)functors with values in the 2-category of
categories.

Definition 3.1.1
A morphism f : �1 → X is called p-cartesian if for n ≥ 2 any lifting problem

{n−1,n} n
n X

n Y

f
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admits a solution. Dually, it is called p-cocartesian if any lifting problem

{0,1} n
0 X

n Y

f

admits a solution. One calls such an f a p-(co)cartesian lift of p(f ).

The definition of (co)cartesian morphisms can be rephrased in terms of slices as
follows.

Lemma 3.1.2
Let p : X → Y be an inner fibration and let f : x → y be a morphism in Y . Then f is
p-cartesian if and only if the functor

X/f −→ X/y ×Y/p(y)
Y/pf

is a trivial fibration. Dually, f is p-cocartesian if and only if the functor

Xf/ −→ Xx/ ×Yp(x)/
Ypf/

is a trivial fibration.

Proof Let ∂�n → �n for n ≥ 0 and consider a lifting problem

n X/f

n X/y ×Y/p(y)
Y/pf

which we wish to solve. By adjunction, this corresponds to the lifting problem

n 1
n 0

n 0 X

n 1 Y
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where the restriction to �1 is given by f . We recall that the left vertical map is isomorphic
to �n+2

n+2 → �n+2 and that the inclusion of �1 into �n+2
n+2 is the edge �{n+1,n+2} . Therefore,

the diagram can be solved for all n ≥ 0. The cocartesian case is similar. ��

Remark 3.1.3
Suppose that p : X → Y is an inner fibration between ∞-categories. Then the map
X/p → X/p is a Joyal equivalence for any diagram p : W → X by Proposition 2.5.27.
Furthermore, the map

X/f −→ X/y ×Y /p(y) Y /pf

is also a right fibration by Lemma 2.5.24. (We have shown this only for p being an
isofibration, but see the remark following Lemma 2.5.24.) Hence, f is cartesian if and
only if this map is a trivial fibration. Likewise, f is cocartesian if and only if the map

Xf/ −→ Xx/ ×Yp(x)/ Y pf/

is a trivial fibration.

Lemma 3.1.4
Let p : E → D and q : D → C be inner fibrations between ∞-categories, and let
f : �1 → E be a morphism in E such that p(f ) is q-(co)cartesian. Then f is p-
(co)cartesian if and only if f is qp-(co)cartesian.

Proof Consider the diagram

where the second horizontal map is a trivial fibration by the assumption that pf is q-
cartesian. Both the first horizontal map and the diagonal map are right fibrations and thus
trivial fibrations if and only if they are Joyal equivalences. From this, the lemma follows. ��
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Remark 3.1.5
The previous lemma holds more generally without the assumption that the involved
simplicial sets are ∞-categories, see [Lur09, Prop. 2.4.1.3]: Since the composition of
trivial fibrations is again a trivial fibration, we immediately see that if f is p-cartesian
then it is also qp-cartesian. In order to see the converse, we can show that the map
E/f → E/y ×D/p(y)

D/pf (which is a Joyal equivalence by the 3-for-2 property) in fact
has contractible fibres and then allude to the general fact that a right fibration which
has contractible fibres is a trivial fibration (or a Joyal equivalence and thus a trivial
fibration), see [Lur09, Lemma 2.1.3.4] or Theorem 3.1.27. The fibre which we are
interested in is the fibre of the map between fibres of the other two maps. Since these
fibres are contractible by assumption, we are done.

Lemma 3.1.6
Let p : E → C be an inner fibration between ∞-categories, and let f : �1 → E be a
morphism. Then f is an equivalence if and only if it is p-(co)cartesian and p(f ) is an
equivalence.

Proof Suppose that f is an equivalence. Then the same is true for p(f ), and the Joyal
lifting theorem (Theorem 2.1.8) implies that f is both cartesian and cocartesian. Assume
now conversely that p(f ) is an equivalence so that it is q-cartesian, where q : C → �0 is
the projection by Exercise 115. We find that f is p-cartesian if and only if f is qp-cartesian
by Lemma 3.1.4, which in turn is the case if and only if f is an equivalence by another
application of Exercise 115. ��

Lemma 3.1.7
Let p : E → C be an inner fibration and let σ : �2 → E, which we will depict as the
diagram

y

x z

ϕf

g

Suppose that ϕ is p-cartesian. Then g is p-cartesian if and only if f is p-cartesian.
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ProofWe observe that the inclusions �{0,1} → �2 and �{0,2} → �2 are left-anodyne, so it
follows that in the two commutative squares

all vertical maps are trivial fibrations. We wish to show the the left lower horizontal map
is a trivial fibration if and only if the right lower horizontal map is. Since both maps are
isofibrations in any case, it suffices to show that one map is a Joyal equivalence if and only
if the other map is. By means of the commutative squares, it hence suffices to show that the
left top horizontal map is a Joyal equivalence if and only if the right top horizontal map is.
For this, we consider the diagram

Here, the right horizontal map is an equivalence because ϕ is p-cartesian, so that the map
E/ϕ → E/z ×C/p(z)

C/pϕ is an equivalence. The left horizontal map is an equivalence because
it is induced by the restriction {1} → �{1,2} which is left-anodyne. Therefore, we find that
the left bended map is an equivalence if and only if the right bended map is an equivalence,
which was left to show. ��

Remark 3.1.8
The conclusion of Lemma 3.1.7 does not require that the base C is an ∞-category.
In fact, the reduction is not too complicated once one has established some properties
of the more general notion of locally cocartesian edges, see [Lur09, 2.4.2] and the
discussion following Definition 3.2.5.

The following notion will be convenient to use.

Definition 3.1.9
A commutative diagram of ∞-categories
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is called homotopy-cartesian if p is an isofibration and the induced map E → C×C′ E′ is
a Joyal equivalence. For C = �0, we will also use the term homotopy fibre sequence for
the composition E → E′ → C′.

Remark 3.1.10
More generally, one can neglect the condition of p being an isofibration by factoring p

into a Joyal equivalence followed by an isofibration E′ �→ E′′ q→ C′ and then requesting
that the induced map E → C ×C′ E′′ is a Joyal equivalence.

Lemma 3.1.11
Let p : C → D be an isofibration between ∞-categories and let x and y be objects of
C. Then the induced map

mapC(x, y) → mapD(p(x), p(y))

is a Kan fibration. The same holds true for mapL and mapR , even if p is only an inner
fibration.

ProofWe consider the diagram

respectively the ones with the ordinary slice C/y instead of C/y and its variant using Cx/

instead of C/y . In this diagram, all squares are pullbacks: the lower one by definition, the
right large one by definition as well, and hence also the small one in the top right corner; the
combined large horizontal one by definition, and hence also the left small square. The lower
horizontal map is a right fibration (in the case of Cx/, it is a left fibration), hence so is the
upper horizontal map. Since mapD(p(x), p(y)) is a Kan complex, it is in fact a Kan fibration
as claimed. ��
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Lemma 3.1.12
Let C → D be an isofibration between ∞-categories, let z be an object of D, and let x
and y objects of C with p(x) = p(y) = z. Then the diagram

is a pullback.

Proof In order to see the remaining claim, we consider the diagram

where all horizontal composites are given by the fibre inclusion over the point corresponding
to idz. Since the middle vertical square and the right vertical square are pullbacks, the leftmost
vertical square is also a pullback. ��

Corollary 3.1.13
Let C → D be an isofibration between ∞-categories, let z be an object of D, and let x
and y be objects of Cz. Then the diagram

is homotopy-cartesian for ? = R,L or void.
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Proof For the ordinary mapping spaces, this follows immediately since the diagram is a
pullback and the right vertical map is a Kan fibration. In order to see the claim for the right
and left mapping spaces, we use Lemma 3.1.11 and Corollary 2.5.34. ��

Lemma 3.1.14
Let p : E → C be an inner fibration between ∞-categories and let f : �1 → E be a
p-cartesian morphism from x to y. Then, for all objects z of E, the induced map

E/f ×E {z} −→ (
E/y ×C/p(y) C/pf

) ×E {z}

is a trivial fibration as well.

ProofWe have a commutative diagram

where both the big square and the lower square are pullbacks. Hence, the upper square is also
a pullback. Since in this square the right vertical map is a trivial fibration by the assumption
that f is p-cartesian, the claim follows. ��

Remark 3.1.15
Replacing the fat slice by the ordinary slice, the same statement holds true for inner
fibrations between arbitrary simplicial sets.

Corollary 3.1.16
Let p : E → C be an inner fibration between ∞-categories, let f : �1 → E be a
p-cartesian morphism of E from x to y, and let z be an object of E. Then the diagram

(continued)
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3.1.16 (continued)
is a homotopy-cartesian diagram of ∞-groupoids. The horizontal maps are induced by
post-composition with f and pf , respectively.

ProofWe consider the diagram

and observe that the left horizontal maps are trivial fibrations, since the inclusion {0} → �1

is left-anodyne. It thus suffices to show that the right square is homotopy-cartesian, and since
the right vertical map is a Kan fibration by Lemma 3.1.11, it suffices to recall that the map

E/f → E/y ×C/p(y) C/pf

is a trivial fibration, so that the same remains true after applying − ×E {z}. ��

Remark 3.1.17
The statement of the corollary is not quite correct, since the square which we construct
does not a priori commute (only up to homotopy). But since the right vertical map is a
Kan fibration, it can always be replaced by a commutative diagram without changing
the homotopy types of the participants, and a concrete way of doing this is to consider
the right square in the diagram appearing in the proof.

Remark 3.1.18
Given an inner fibration p : E → C and a morphism f : �1 → E such that, for every
object z of E, the diagram

(continued)
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3.1.18 (continued)
is homotopy-cartesian, then f is p-cartesian. This can be seen by observing that the
map

E/f → E/y ×C/(y) C
/pf

is a trivial fibration if and only if it induces an equivalence on each fibre over points
in E. As before, this statement holds in general for right fibrations via a combinatorial
argument (without E and C having to be ∞-categories). In the case where E and C

are ∞-categories, we will soon prove this result for so-called cartesian fibrations (see
Theorem 3.1.27), and we will subsequently deduce the version for right fibrations from
it.

Corollary 3.1.19
Let p : E → C be an inner fibration and let x and y be objects of E. Let f : x′ → y be
a p-cartesian morphism with p(x′) = p(x). Then the diagram

is homotopy-cartesian.

Proof By Corollary 3.1.16 we have a homotopy-cartesian diagram

so that the induced map of vertical fibres is an equivalence over the point �0 →
mapC(p(x), p(x′)) corresponding to idp(x). By Corollary 3.1.13, the left vertical fibre is
given by mapEp(x)

(x, x′), so the claim is shown. ��

Therefore, inner fibrations p : E → C which have a sufficient supply of cartesian
morphisms are such that the mapping spaces in E are controlled by those of C and
all fibres.
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Definition 3.1.20
An inner fibration p : X → Y is called a cartesian fibration if every lifting problem

has a solution which is a p-cartesian morphism in X. Dually, p is called a cocartesian
fibration if every lifting problem

admits a solution which is a p-cocartesian morphism in X.

Informally, an inner fibration is a (co)cartesian fibration if it admits a p-
(co)cartesian lift of any morphism in C (with a specified source or target).

Example Right fibrations are cartesian fibrations, and left fibrations are cocartesian
fibrations.

Lemma 3.1.21
Let p : E → C be a (co)cartesian fibration between ∞-categories. Then p is an
isofibration.

Proof This follows from Lemma 3.1.6, which states that a p-cartesian lift of an equivalence
is an equivalence. ��

Lemma 3.1.22
A cartesian fibration E → C is a right fibration if and only if every morphism in E

is p-cartesian. Dually, a cocartesian fibration is a left fibration if and only if every
morphism in E is p-cocartesian.

Proof By definition, in a cartesian fibration one can lift the right outer 1-horn. If furthermore
every morphism in E is p-cartesian, this simply says that one can also lift all right outer



174 3 (Co)Cartesian Fibrations and the Construction of Functors

horns of dimension greater or equal to 2. Conversely, a right fibration admits some lift of
the diagram in the definition, and by definition of a right fibration, every morphism in p-
cartesian. The argument for cocartesian fibrations is similar. ��

Proposition 3.1.23
Let p : E → C be a cartesian fibration between ∞-categories. Then p is a right
fibration if and only if, for all objects x of C, the fibres Ex = E×C {x} are ∞-groupoids.

Proof Right fibrations are cartesian fibrations whose fibres are ∞-groupoids. Conversely,
assume that p : E → C is a cartesian fibration whose fibres are ∞-groupoids. We will show
that every morphism is p-cartesian and then allude to Lemma 3.1.22. For this purpose, let
f : �1 → E be a morphism from x to y and choose a p-cartesian lift ϕ of p(f ) with target
y. We consider the diagram

2
2

2

(f,ϕ)

σ

where the map σ is given by the diagram

p(y)
p(f )id

p(f )
p(x) p(y)

Since ϕ is p-cartesian, there exists a dashed arrow in this diagram. The resulting 2-simplex
τ is given by the diagram

y

x y

ϕ

f

ψ

where ψ is a morphism in the fibre Ex over x and hence invertible by the assumption that
all fibres are ∞-groupoids. Therefore, by applying Lemma 3.1.7, we find that f is cartesian
because ϕ is. ��



3.1 (Co)Cartesian Fibrations 175

Remark 3.1.24
The conclusion of Proposition 3.1.23 also holds if E and C are not assumed to be ∞-
categories. In fact, one can deduce the more general statement from Proposition 3.1.23,
and we recommend to do so as an exercise.

Corollary 3.1.25
A cartesian fibration is conservative if and only if it is a right fibration.

ProofRight fibrations are conservative by Proposition 2.1.7. Conversely, given a conservative
cartesian fibration p : E → C, the fibre Ex over each object x of C is an ∞-groupoid:
Each morphism in the fibre is sent to the identity of x by p. We may thus apply
Proposition 3.1.23. ��

Definition 3.1.26
Let p : X → Y and p′ : X′ → Y be (co)cartesian fibrations. We say that a map
f : X → X′ is a morphism of (co)cartesian fibrations if p′f = p and if f sends p-
cartesian morphisms to p′-cartesian morphisms.

Example Suppose that p : X → Y is a cartesian fibration and that p′ : X′ → Y is a
right fibration. Then any map f : X → X′ with p′f = p is a morphism of cartesian
fibrations, because all morphisms in X′ are p′-cartesian.

Theorem 3.1.27
Let f : E → E′ be a morphism of (co)cartesian fibrations p : E → C and p′ : E′ → C

between ∞-categories. Then f is a Joyal equivalence if and only if, for all objects z of
C, the induced map on fibres Ez → E′

z is a Joyal equivalence.

Proof The “only if” direction holds more generally for maps between isofibrations, see
Lemma 2.5.32. Let us hence assume that all induced maps Ex → E′

x are Joyal equivalences.
We wish to show that f is a Joyal equivalence. For this, we will first show that f is fully
faithful and essentially surjective, and then conclude the theorem from Theorem 2.3.20.

In order to see that f is essentially surjective, we consider an object y′ of E′ and let
x = p′(y′). Since the map Ex → E′

x is a Joyal equivalence, it is in particular essentially
surjective. Hence there exists an object y in Ex and an equivalence between f (y) and y′ in
E′

x . It follows that f is essentially surjective.
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In order to see that f is fully faithful, we consider two objects x and y in E and need to
show that the map

mapE(x, y) −→ mapE′(f (x), f (y))

is a homotopy equivalence.
For this purpose, we choose a p-cartesian lift α̂ : x′ → y of α (which implies p(x′) =

p(x)) and note that f (α̂) is a p′-cartesian lift of f (α) by assumption. Furthermore, by
Corollary 3.1.19 we have a diagram of homotopy fibre sequences

map
p(x)

(x, x ) map
p(x)

(f (x), f (x ))

map (x, y) map (f (x), f (y))

map (p(x), p(y)) map (p(x), p(y))

where the horizontal map on the base and the fibre are an equivalence by the assumption that
f restricts to a fully faithful functor on the fibres. Therefore, the middle horizontal map is
also an equivalence by Lemma 2.3.19. ��

3.2 Marked Simplicial Sets andMarked Anodyne Maps

So far, we have seen that a left/right fibration is a special kind of (co)cartesian
fibration. Since left fibrations are determined by a right lifting property (with
respect to left-anodyne maps), one can ask whether (co)cartesian fibrations are
also characterized by a lifting property. The answer is that this not true on the
nose, but that it is true in the context of marked simplicial sets, i.e., simplicial
sets where one remembers a set of 1-simplices (the marked edges) as part of the
datum.

Marked simplicial sets provide another model for the ∞-category of ∞-
categories. Although this presentation has some technical advantages over the
Joyal model structure, this point will not be of great importance to us. We will,
however, relate marked simplicial sets to the previous construction of Dwyer–Kan
localizations: Namely, there is a close relation between Dwyer–Kan localizations
and marked equivalences, and we will see that one can view the canonical map to a
Dwyer–Kan localization as a fibrant replacement in the marked model structure on
marked simplicial sets.
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Definition 3.2.1
A marked simplicial set is a pair (X,M) where M is a subset of the 1-simplices of X

which contains all degenerate 1-simplices. The elements of M are called marked edges
in X. Note that there is a corresponding category sSet+ of marked simplicial sets, where
morphisms are required to send marked edges to marked edges.

Example Let X be a simplicial set. Then we denote by X� the marked simplicial
set where an edge is marked if and only if it is degenerate. We denote by X� the
marked simplicial set in which all morphisms are marked. This produces functors
(−)�, (−)� : sSet → sSet+. There are also two functors sSet+ → sSet: The one
forgets the marking, and the other takes the smallest sub-simplicial set spanned by
the marked 1-simplices.

Example Let p : X → S be a map of simplicial sets. We denote by X� the marked
simplicial set where an edge is marked if and only if it is p-cocartesian. Thus, if
p : X → S is a cocartesian fibration, then the map X� → S� is a map of marked
simplicial sets.

Definition 3.2.2
The smallest saturated set containing the following maps of marked simplicial sets is
called marked left-anodyne:

(1) for all 0 < i < n, the maps (�n
i )

� → (�n)�;
(2) for every n > 0, the map (�n

0)
s� → (�n)s�, where the superscript s� denotes all

degenerate edges and the special edge �{0,1} to be marked;
(3) the map (�2

1)
� �(�2

1)
� (�2)� → (�2)�; and

(4) for every ∞-groupoid X, the map X� → X�.

Remark 3.2.3
A different (but equivalent) generating set of the marked left-anodyne maps is given by
the following maps:

(1′) for all 0 < i < n, the maps (�n
i )

� → (�n)�;
(2′) the maps (�1)� × (�1)� ∪ {0} × (�1)� → (�1)� × (�1)�;
(3′) the maps (�1)� × (∂�n)� ∪ {0} × (�n)� → (�1)� × (�n)�;
(4′) the map J � → J �.
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Remark 3.2.4
We could equally well take the set generated by the maps (1), (2), (3′), and (4), see
[Lur09, Proposition 3.1.1.5] for details. This will be used in Lemma 3.2.12. Likewise,
we could use the set generated by (1), (2), (3), and (4′). (In fact, this is very easy to
see, and we recommend it as an exercise).

In order to prove that (co)cartesian fibrations are determined by a lifting property
in marked simplicial sets, it will be convenient to talk about locally cocartesian
edges.

Definition 3.2.5
Let p : X → S be an inner fibration of simplicial sets. An edge f : x → y is called
locally cocartesian, if it is q-cocartesian with q being the pullback

X X

1 S

q p

pf

Lemma 3.2.6
Let p : X → S be an inner fibration and f : x → y an edge in X.

(1) If f is p-cocartesian, then it is locally cocartesian.
(2) If f is locally cocartesian and if there exists a p-cocartesian lift g : x → y′ of

p(f ), then f is p-cocartesian.

Proof In fact, the statement (1) can be strengthened into saying that if f is p′-cocartesian for
some pullback of p, then f is locally cocartesian, see Exercise 118. We will omit the proof
here. In order to show (2), we consider a lifting problem

{0,1} n
0 X ×S

n X

n S

f

p p

σn
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Writing X′ = X ×S �n, we observe that f and g are canonically edges in X′, such that f is
still locally cocartesian, and g is p′-cocartesian. In order to see that g gives rise to an edge of
X′ indeed, we only need to observe that the diagram

{0,1} X

n S

g

p

σ

commutes. We may thus assume that S is an ∞-category. In this case, we consider the horn
obtained from g and f , and a lifting problem

2
0 X ×S

1 X

2 1 S

(g,f )

q pτ

pf

Since g is p-cocartesian, a dashed arrow rendering the diagram commutative exists. We claim
that h = τ ′

|�{1,2} is an equivalence in the fibre ∞-category Xp(y). From Lemma 3.1.7, we can
deduce that h is q-cocartesian and lies over the identity. It is hence an equivalence in the
fibre Xp(y) by Lemma 3.1.6. Again by Lemma 3.1.6, we deduce that h is also p cocartesian.
(Notice that we have assumed S and hence X to be ∞-categories.) ��

The following lemma provides another useful observation.

Lemma 3.2.7
Let p : X → S be an inner fibration of simplicial sets. Consider a 2-simplex of X

depicted as

y
gf

h
x z

Suppose that f is p-cocartesian. Then if g (respectively h) is p-cocartesian, then h

(respectively g) is locally cocartesian.

Proof Exercise 119. ��
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Remark 3.2.8
In [Rez19], you can find for more information about locally (co)cartesian edges and
criteria for when locally (co)cartesian edges are in fact (co)cartesian.

Proposition 3.2.9
A map of marked simplicial sets p : X → S has the right lifting property with respect
to all marked left-anodyne maps if and only if the following points hold:

(1) p is an inner fibration.
(2) An edge of X is marked if and only if it is p-cocartesian and its image is marked in

S.
(3) Any lifting problem of marked simplicial sets

{0} X

1) S

can be solved.

Proof Let us first assume that p satisfies the RLP with respect to marked left-anodyne maps
and conclude that p satisfies the conditions (1) to (3) of the statement. The properties (1) and
(3) follow easily. In order to see (2), we first show that any marked edge f : (�1)� → X is
p-cocartesian. For this, consider a lifting problem

{0,1} n
0 X

n S

f

We want to show that this lifting problem admits a solution: Since the above composite is
marked, it gives rise to a diagram of marked simplicial sets

n
0) X

n) S

which can be solved since the left vertical map is marked anodyne.
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Conversely, let us show next that any p-cocartesian edge f : x → y is marked provided
that pf is marked. For this purpose, consider the diagram

{0} X

1) S

x

pf

g

which can be solved by the assumption. The resulting morphism g is marked and thus p-
cocartesian by the previous argument. Consider then the diagram

2
0) X

2) S

(g,f )

τ

which can again be solved by the assumption. Here, the lower horizontal map is a degenerate
2-simplex on the morphism pf = pg. We denote τ|�{1,2} by h. Considering the pullback
diagram

X ×Y
2 X

2 S

q

pτ

and the canonical map �2 → X ×Y �2, we may apply Lemma 3.1.7 to see that h is
q-cocartesian, since f and g are also q-cocartesian. As qh = idp(y) , we deduce from
Lemma 3.1.6 that h is an equivalence in the ∞-category Xp(y). We consider the diagram

J Xp(y) X

J S

h

idp(y)

which can again be solved, since J is an ∞-groupoid. It follows that h is marked. Next, we
observe that the RLP with respect to the map (�2

1)
� �(�2

1)
� (�2)� → (�2)� implies that a

composition of marked morphisms is marked. Since f is a composition of g and h, we find
that f is marked as needed.

We now prove that any map p : X → S of marked simplicial sets satisfying the properties
(1) to (3) of the statement satisfies the RLP with respect to marked left-anodyne maps. The
lifting property with respect to the maps (1) and (2) of Definition 3.2.2 is immediate. In order
to see that p satisfies the RLP with respect to the map (�2

1)
� �(�2

1)
� (�2)� → (�2)�, we have
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to show that a composite of marked edges is again marked. More precisely, assume that a
2-simplex σ : �2 → X is given, depicted as the diagram

y

x z

gf

h

and assume that both f and g are p-cocartesian and that p(h) is marked. First, we deduce
from Lemma 3.2.7 that h is locally cocartesian. By an application of the properties (2) and
(3) of the statement, we also find a p-cocartesian edge h′ : x → z′ over p(h). Lemma 3.2.6
then shows that h is in fact p-cocartesian, and hence marked.

Finally, we need to argue that p has the RLP with respect to J � → J �, see Remark 3.2.4.
Unravelling the definitions, it will suffice to prove the following: Given an edge f : x → y

whose classifying map takes part in a commutative diagram

1) J J S X X

J J S

f

p p

then f is a marked edge in X, or by property (2) of the statement, f is p-cocartesian. Since
property (3) of the statement supplies a p-cocartesian g : x → y′ lift of p(f ), it suffices by
Lemma 3.2.6 to show that f is locally cocartesian. By construction, f is an equivalence in
the ∞-category J � ×S X, and hence p′-cocartesian. In particular, it is locally cocartesian,
see Exercise 118. ��

Corollary 3.2.10
A map of marked simplicial sets p : (X, S) → Y � has the right lifting property with
respect to marked left-anodyne maps if and only if S equals all p-cocartesian edges
and p is a cocartesian fibration.

The following consequence will be of use to us later on.

Corollary 3.2.11
The map (�2

0)
� �(�2

0)
� (�2)� → (�2)� is marked anodyne.

ProofWe observe that the left-hand side is the simplicial set �2, where the edges �{0,1} and
�{0,2} are marked. We need to show that this map satisfies the LLP with respect to maps
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p : X → Y satisfying the properties (1)–(3) of Proposition 3.2.9. Since the argument is
similar to the one appearing in the proof of Proposition 3.2.9 for �2

1 instead of �2
0, we leave

the details as an exercise. ��

Lemma 3.2.12
The pushout product of a marked left-anodyne map with any monomorphism is again
marked left-anodyne.

Proof We refer to [Lur09, Prop. 3.1.2.3.] for a full proof of this result. It is in spirit very
similar to the arguments which we gave when showing that the pushout product of a left-
/right-/inner-anodyne map with a monomorphism is again left/right/inner-anodyne: The first
things to observe are:

(a) The set of monomorphisms such that the conclusion holds is saturated.
(b) The set of marked anodyne maps for which the conclusion holds is saturated.
(c) The monomorphisms in marked simplicial sets are generated by the maps (∂�n)� →

(�n)� and the map (�1)� → (�1)�.

We will only prove (c) and leave the other two items as exercises. As for (c), it is clear that
the boundary inclusions as described generate monomorphisms of the form K� → L�. For
every marked simplicial set (K,M) and every monomorphism of simplicial sets K → L, the
following is a pushout of marked simplicial sets:

K (K,M)

L (L,M)

Therefore, the right vertical map is generated by the boundary inclusions. In order to show
that a general monomorphism of marked simplicial sets is generated by the maps appearing
in statement (c), it suffices to see that (L,M) → (L,M ′) is generated by the these maps for
M ⊆ M ′. For this, we observe that there is a pushout

m ∈M \M
1) (L,M)

m ∈M \M
1) (L,M )

so that the claim is proven.
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It hence suffices to show that the pushout product of a map of the kind (1)–(4) of
Definition 3.2.2 with a map of the kind as appears in (c) is marked anodyne. There are eight
cases to consider:

(1) We consider the pushout product of (�n
i )

� ⊆ (�n)� with (∂�n)� ⊆ (�n)�. Since (−)�

preserves colimits, the pushout product map is given by applying (−)� to the pushout
product of the underlying maps of simplicial sets. This is again inner-anodyne, so that it
becomes marked anodyne upon applying (−)�.

(2) The pushout product of (�n
i )

� ⊆ (�n)� with (�1)� → (�1)� is an isomorphism and thus
marked anodyne. For this, note that n ≥ 2 so that the map �n

i → �n is an isomorphism
on vertices.

(3) The pushout product of K� → K� with (∂�n)� → (�n)� is an isomorphism for n > 0,
and it equals the map K� → K� for n = 0; in either case, it is marked anodyne.

(4) The pushout product of K� → K� with (�1)� → (�1)� is the map (K × �1,M) →
(K × �1)�, where M is given by the pairs (a, b) and either a or b is degenerate. Since
every 1-simplex (a, b) in (K × �1) is a composite of (a, id) and (id, b), and since
identities are degenerate, the map we are interested in is marked anodyne (adding a
composite of marked edges is marked anodyne).

(5) The pushout product of (�2
1)

� �(�2
1)

� (�2)� → (�2)� with (∂�n)� → (�n)� is an
isomorphism for n ≥ 1, and the given map for n = 0, and hence it is marked anodyne in
any case.

(6) The pushout product of (�2
1)

� �(�2
1)

� (�2)� → (�2)� with (�1)� → (�1)� is almost an
isomorphism: The only edge which is not marked in the domain (in the target, all edges
are marked) is the edge (0 → 2, 0 → 1). This, however, is a composite of marked edges,
so that the needed map is again marked anodyne.

The remaining cases are handled most easily by using the alternative generating set of marked
left-anodyne maps, i.e., by working with the set (3′) instead of (3). The key point is that the
saturated set generated by the maps

(�1)� × (∂�n)� ∪ {0} × (�n)� → (�1)� × (�n)�

is the same as that for the maps

(�1)� × A� ∪ (�1)� × B� → (�1)� × B�

for monomorphisms A → B.

(7) The pushout product of (�1)� ×(∂�n)� ∪{0}×(�n)� → (�1)� ×(�n)� with (∂�n)� →
(�n)� is of the latter kind. This follows from the associativity of pushout products: It is
given by the pushout product of {0} → (�1)� with the pushout product of (∂�n)� →
(�n)� with itself, which is clearly of the form A� → B� for a monomorphism A → B.

(8) The pushout product of (�1)� × (∂�n)� ∪ {0}× (�n)� → (�1)� × (�n)� with (�1)� →
(�1)� is, as before, an isomorphism if n > 0. For n = 0, the first pushout product is
simply {0} → (�1)�, so we obtain the map (�1 × �1,M) → (�1 × �1)�, where M

consists of the degenerate edges and the edges {0} × �1, and �1 × {ε} for ε = 0, 1.
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Using property (3) and Corollary 3.2.11, we find that this is a composition of marked
left-anodyne maps. ��

From this result, we can deduce the following proposition.

Proposition 3.2.13
Let p : E → C be a cocartesian fibration and let K be a simplicial set. Then p∗ : EK →
CK is again a cocartesian fibration, and an edge is p∗-cocartesian if and only if its
image in E under the restriction along any object of K is p-cocartesian.

Proof As a special case of Lemma 3.2.12, we find that for any marked left-anodyne map
A → B, the map A × K� → B × K� is also marked left-anodyne. Using Proposition 3.2.9,
one can solve any lifting problem

A × K

B × K

Since (−)� is left-adjoint to the forgetful functor, this means that (EK, S) → (CK)� has the
right lifting property with respect to marked anodyne maps, where S consists of those edges
whose restriction to any object of K become p-cocartesian. By Corollary 3.2.10, S consists
precisely of the p∗ cocartesian edges and p∗ is a cocartesian fibration. ��

Definition 3.2.14
Let p : E → C be a cocartesian fibration and K a marked simplicial set. We denote by
Funmcc(K,E) the full subcategory of Fun(K,E) on functors which send all morphisms
of K to p-cocartesian morphisms in E. If K is equipped with a map f : K → C�, then
we denote by Funmcc

f (K,E) the pullback

Funmcc
f (K, ) Funmcc(K, )

0 Fun(K, )

p∗
f

If K is an ordinary simplicial set, then we write Funcc(K,E), respectively Funccf (K,E)

for Funmcc(K�,E), respectively Funmcc
f (K�,E).
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Remark 3.2.15
In [Lur09], what we denote by Funmcc(K,E) is written as Map�(K,E�). Likewise, what
we denote by Funmcc

f (K,E) is denoted by Map�
K(K,E�).

The reason for this notation is that the category of marked simplicial sets is cartesian
closed, which means that for every marked simplicial set K , the functor K × − admits
a right adjoint, denoted by X �→ XK . We define a simplicial set Map�(K,X) whose
n-simplices are given by HomsSet+ ((�n)� × K,X). Likewise, we define a simplicial
set Map�(K,X) whose n-simplices are given by HomsSet+((�n)� × K,X). With our
previous notation, we have that u(XK) = Map�(K,X) and m(XK) = Map�(K,X).

Proposition 3.2.16
Let p : E → C be a cocartesian fibration, let i : K → L be a marked anodyne map,
and let f : L → C� be a morphism. Then the induced map

Funmcc
f (L,E) −→ Funmcc

f i (K,E)

is a trivial fibration.

ProofWe need to show that any lifting problem

S Funmcc
f (L, )

T Funmcc
f i (K, )

can be solved if S → T is a monomorphism of simplicial sets. Based on the definitions, this
is the case if and only if the lifting problem

S × L S ×K T × K

T × L

can be solved. By Lemma 3.2.12, the left vertical map is marked anodyne, so the claim
follows. ��
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We learned the following lemma, which will be important for us in the sequel,
from Hoang Kim Nguyen’s thesis, [Ngu18, Lemma 3.2.3].

Lemma 3.2.17
Let K → L be a left-anodyne map. Then the map K� → L� of marked simplicial sets
is marked anodyne.

Proof First we claim that the set of monomorphisms K → L of simplicial sets such that
K� → L� is marked anodyne is saturated. It hence suffices to show that for 0 ≤ i < n, the
map (�n

0)
� → (�n)� is marked anodyne. We observe that sk1(�n

i ) = sk1(�n) once n is at
least 3. Thus for n ≥ 3 and 0 < i < n, we have a pushout

n
i )

n
i )

n) n)

which shows that the right vertical map is marked anodyne. Likewise, there is a pushout

n
0)

n
0)

n) n)

so that the right vertical map is again marked anodyne. It remains to treat the cases n < 3.
The case n = 1 is clear, so it remains to treat the case n = 2, for which we need to discuss
the cases i = 0 and i = 1. There are pushouts

2
0)

2
0)

2
0)

2) 2) 2) 2
0)

2
0)

so that the very right vertical map is marked anodyne. By Corollary 3.2.11 the further map

(�2)� �(�2
0)

� (�2
0)

� → (�2)�
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is also marked anodyne, so that the map (�2
0)

� → (�2)� is marked anodyne as well. For the
remaining case, we have the pushout

2
1)

2
1)

2) 2
1) 2

1)
2)

so that the right vertical map is marked anodyne. By definition, the map

(�2
1)

� �(�2
1)

� (�2)� → (�2)�

is marked anodyne as well, so the lemma is proven. ��

With this lemma at hand, we have the following immediate consequence which
will be very important for us later.

Corollary 3.2.18
Let p : E → C be a cocartesian fibration, i : K → L a left-anodyne map of simplicial
sets and f : L → C a morphism. Then the induced map

Funccf (L,E) −→ Funccf i(K,E)

is a trivial fibration.

Proof This is the special case of Proposition 3.2.16 where the marked left-anodyne map is
i� : K� → L�, using Lemma 3.2.17. ��

If f : �1 → C is a morphism, then the ∞-category Funccf (�1,E) parametrizes
all p-cocartesian lifts of a given morphism in C. We thus find the following result.

Corollary 3.2.19
Let p : E → C be a cocartesian fibration and f : �1 → C a morphism from x to y in
C. Then the map Funccf (�1,E) → Ex given by evaluating at {0} is a trivial fibration.
In particular, the simplicial set

Funccf (�1,E) ×Ex
{z}

is a contractible Kan complex for every object z of Ex .
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ProofWe consider the pullback diagram

where the right vertical map is a trivial fibration because it is obtained by restriction along
{0} → �1 (which is left-anodyne so that we may apply Corollary 3.2.18). Therefore, the left
vertical map is also a trivial fibration. ��

In the remaining part of this section, we want to indicate how one can make use
of marked simplicial sets to study Dwyer–Kan localizations.

In what follows, we will always view ∞-categories as a cocartesian fibration
over �0, so that C� denotes the marked simplicial set C whose marked edges are all
equivalences of C.

Definition 3.2.20
Let X,Y be marked simplicial sets. A morphism f : X → Y is called a marked
equivalence if for any ∞-category C, the induced map.

Funmcc(Y,C) → Funmcc(X,C)

is an equivalence of ∞-categories.

ExampleLet C be an ∞-category, S a set of morphisms containing all equivalences,
and C[S−1] a localization. Then the map (C, S) → C[S−1]� is a marked equivalence.

Example Let A → B be a marked left-anodyne map. Then A → B is a marked
equivalence. This is a special case of Proposition 3.2.16: We need to show that for
every ∞-category E, the restriction functor

Funmcc(B,E) → Funmcc(A,E)

is a Joyal equivalence. In fact, it is a trivial fibration, because Funmcc(B,E) =
Funmcc∗ (B,E) for the cocartesian fibration E → �0 and the canonical map ∗: B →
�0 (likewise for A instead of B).

As in Sect. 1.3, we expect to be able to factor any map into a marked anodyne
map followed by a map which satisfies the RLP with respect to marked anodyne
maps. For maps of the form X → �0, we find that the resulting map C → �0 is an
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inner fibration, and the marked edges of C are precisely the equivalences. We will
not prove the following theorem in this book.

Theorem 3.2.21
There exists a simplicial model structure on marked simplicial sets whose cofibrations
are monomorphisms, whose equivalences are marked equivalences, and where fibrant
objects are precisely ∞-categories whose marked edges are all equivalences.

Corollary 3.2.22
A Dwyer–Kan localization of C along S may thus be thought of as a fibrant replacement
of (C, S) in this model structure on marked simplicial sets.

Lemma 3.2.23
Let (C, S) be a marked ∞-category and let E be an ∞-category. Then there is an
equivalence Funmcc((C, S),E) � Fun(C[S−1],E) of ∞-categories.

Proof This follows immediately from the definition of localizations. ��

More generally, we have the following result.

Lemma 3.2.24
Let (C, S) and (D, T ) be ∞-categories equipped with sets of maps, viewed as marked
simplicial sets. A map f : (C, S) → (D, T ) of marked simplicial sets is a marked
equivalence if and only if the induced map

f̄ : C[S−1] �→ D[T −1]

on Dwyer–Kan localizations is an equivalence.

Proof Let E be an auxiliary ∞-category. Consider the commutative diagram
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where the vertical maps are equivalences by Lemma 3.2.23. Hence the upper horizontal map
is an equivalence if and only if the lower one is. Since E is an arbitrary ∞-category, the
lemma follows. ��

We conclude this section with the following results describing certain Dwyer–
Kan localizations of 1-categories to the coherent nerve of related Kan-enriched
categories. In more detail, for a simplicial model category M , we let Mc denote
the category of cofibrant objects (viewed as an ordinary category), and we let M◦
denote the category of cofibrant-fibrant objects (viewed as a Kan-enriched category
induced from the simplicial model structure on M). In [Lur17], Lurie constructs a
functor N(Mc) → N(M◦)which induces a functor N(Mc)[W−1] → N(M◦), where
W denotes the collection of weak equivalences of the model structure.

Theorem 3.2.25
Let M be a simplicial model category. Then the canonical functor N(Mc)[W−1] →
N(M◦) is an equivalence of ∞-categories.

Corollary 3.2.26
There are equivalences of ∞-categories sSet[we−1] � Spc and sSet[Joy−1] � Cat∞.

Proof The Kan–Quillen model structure on simplicial sets is simplicial and every object is
cofibrant. The cofibrant-fibrant objects are the Kan complexes, and the induced Kan-enriched
simplicial category is the one defining Spc, so the first claim follows from Theorem 3.2.25.
In order to see the second claim, we first claim that there is an equivalence

sSet[Joy−1] � sSet+[me−1].

Indeed, the fibrant replacement functor determines an equivalence Cat1∞[Joy−1] �
sSet[Joy−1], see Lemma 2.4.9. Likewise, sSet+[me−1] is equivalent to the localization
of the fibrant objects at the marked equivalences. Now, the subcategory of fibrant objects
of sSet+ is isomorphic to Cat1∞, the inverse functors being “forgetting the marking” on
the one hand, and marking all equivalences on the other hand. Moreover, a map between
∞-categories, viewed as a map of marked simplicial sets, is a marked equivalence if and
only if it is a Joyal equivalence by Lemma 3.2.24. Therefore, we also obtain an equivalence
Cat1∞[Joy−1] � sSet+[me−1]. Now we apply Theorem 3.2.25 to the model structure on
marked simplicial sets as in Theorem 3.2.21. In a last step, one needs to observe that the
simplicial enrichment coming from the simplicial model structure on marked simplicial sets
(the simplicial mapping objects are given by Map�(X, Y ), see Remark 3.2.15) is the same
enrichment as used to define Cat∞ in Definition 2.1.13. ��
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Remark 3.2.27
Instead of appealing to the general result on simplicial model categories, one can also
directly appeal to a dual version of [Lur17, Proposition 1.3.4.7] (making use of path
objects as opposed to cylinder objects) and deduce Corollary 3.2.26 in this manner. We
point out that [Lur17, Proposition 1.3.4.7] enters the proof of Theorem 3.2.25.

3.3 Straightening-Unstraightening

In this section, we want to formulate and discuss an important correspondence:
the Grothendieck construction. The main theorem which we will formulate and
explain to some extend is Lurie’s straightening-unstraightening equivalence, which
compares the ∞-category Fun(C,Cat∞) of functors from a fixed ∞-category C

to the ∞-category of ∞-categories with an ∞-category of cocartesian fibrations
over C. We will explain in detail how to associate a functor C → Cat∞ to
a cocartesian fibration over C, and we will briefly state how this construction
is part of an equivalence of ∞-categories as described above. Also, we will
give some conceptual picture of how this equivalence is meant to arise, and
give some references to where this process is analyzed. We note that the strat-
egy for constructing a functor C → Cat∞ from a cocartesian fibration over
C is borrowed from [Hau17], where the variant for right fibrations is carried
out.

We beginwith an informal construction. Consider a cocartesian fibrationp : E →
C. From this, we can extract the following data:

(1) for each object x of C, we have the ∞-category Ex ;
(2) for each morphism f : x → y in C and an object z in Ex , we can choose a

p-cocartesian lift z → w of f , which we will denote by w = f!(z);
(3) given a further object z′ in Ex and a morphism α : z → z′, we can choose

another p-cocartesian lift z′ → w′ = f!(z′) and obtain a diagram

z z

f!(z) f!(z )

Since z → f!(z) is p-cocartesian, the space of dashed arrows making the
diagram commutative is contractible. We will denote any such dashed arrow
by f!(α).
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Summarizing, associated to a cocartesian fibration p : E → C, we wish to find
a functor C → Cat∞ which sends an object x to the fibre Ex = p−1(X) and a
morphism f : from x to y to a functor f! : Ex → Ey as indicated above.

Proposition 3.3.1
Given a cocartesian fibration p : E → C and a morphism f : �1 → C from x to y,
there exists a functor Ex ×�1 → E whose restriction to every object z of Ex provides a
p-cocartesian morphism α : z → z′ over f . Restricting this functor to Ex × {1} yields
a functor f! : Ex → Ey .

ProofWe begin by constructing, for each cocartesian fibration p : E → C and each morphism
f : �1 → C from x to y, a functor f! : Ex → Ey . For this, recall that in this situation, the
canonical map Funccf (�1,E) → Ex given by taking the source of a morphism is a trivial
fibration. Choosing a section of this trivial fibration produces the composite

f! : Ex → Funccf (�1,E) → Ey

where the latter map is given by taking the target of a morphism. Furthermore, we find that
the first map is adjoint to a map

Ex × �1 → E

with the following properties: Its restriction to Ex × {1} is given by f!, it makes the diagram

commute, and furthermore, for each object z in Ex , the resulting morphism �1 → E is a
p-cocartesian morphism with source equal to z and target equal to f!(z). ��

Next, we wish to show that the association f �→ f! is functorial in f . For this,
we consider a 2-simplex σ : �2 → C inside C, which exhibits h as a composition of
f and g. Then in the diagram
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the maps labelled with � are trivial fibrations, because they arise as restrictions
along left-anodyne maps. This shows that there is a natural isomorphism between
g!f! and h!.

In the sequel, we shall explain the general construction. For this, we fix a
cocartesian fibration p : E → C.

Lemma 3.3.2
Associating to σ : �n → C the ∞-category Funccσ (�n,E) extends to a functor
�(p) : �

op
/C → sSet.

ProofWe need to show that a commutative diagram

induces a well-defined functorial map Funccτ (�m,E) → Funccσ (�n,E). But this is clear from
the definition. ��

Definition 3.3.3
Let X be a simplicial set. We denote by WX the set of all morphisms f : [n] → [m] in
�/X such that f (0) = 0.
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Lemma 3.3.4
For a cocartesian fibration p : E → C, the functor �(p) sends any morphism in WC to
a Joyal equivalence.

Proof Consider a morphism f in �/C, represented by the composite �n f→ �m σ→ C. We
will write τ = σf . By assumption, the composite

�{0} → �n f→ �m

picks out the object 0 in �m. Therefore, we have a commutative diagram

where both diagonal maps are trivial fibrations by Corollary 3.2.18, because the inclusion
�{0} → �k is left-anodyne for any k ≥ 0. Hence, the map f ∗ is a Joyal equivalence as
claimed. ��

Corollary 3.3.5
For every cocartesian fibration p : E → C, we obtain a functor

�(p) : N(�
op
/C)[W−1

C ] −→ Cat∞.

Proof By the previous lemma, �(p) induces a functor between the localizations

N(�
op
/C)[W−1

C ] −→ sSet[Joy−1],

and the latter admits a further functor to Cat∞ (which is in fact an equivalence by
Corollary 3.2.26). ��

Lemma 3.3.6
LetX be a simplicial set. Then there is a canonical map of simplicial setsN(�

op
/X) → X

called the initial vertex map.
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Proof Recall that a k-simplex of the nerve is given by a sequence

[n0] α1→ [n1] α2→ [n2] α0→ · · · αk→ [nk]

together with a map σ : �nk → X. We observe that the association α : [k] → [nk] given by
sending 0 to 0 and i to αk ◦· · ·◦αk−i+1(0) is a map of linearly ordered sets. Hence, we obtain
a k-simplex of X by the composite �k α→ �nk

σ→ X. It is straightforward to check that this
association defines a map of simplicial sets as needed. ��

Lemma 3.3.7
The initial vertex map sends all morphisms in WX to degenerate edges of X.

ProofRecall that a 1-simplex inWX is represented by the composite [n] f→ [m] σ→ X, where
the map f sends 0 to 0. The resulting 1-simplex of X is given by restricting the map σ along
the map [1] → [m] given by sending 0 to 0 and 1 to f (0) = 0. This is a degenerate edge in
[m], and it thus remains degenerate after applying the map σ . ��

The following result is due to Joyal and Dwyer–Kan, and has also been proved
by Stevenson, see [Ste17, Theorem 1.3].

Theorem 3.3.8
For every ∞-category C, the initial vertex map induces a Joyal equivalence

N(�
op
/C)[W−1

C ] �−→ C.

Proof The proof will consist of two steps: First, one shows that the claim can be reduced to
the case C = �n, and then one has to show the claim in this case.

As a very first step, we need a slightly more general version of the above-said, namely
we want to show that these maps make sense for an arbitrary simplicial set X instead of C.
Clearly, the initial vertex map defines a map �

op
/X → X. Now, for the moment, let us define

for a marked simplicial set (X, S) a simplicial set L(X, S) by the pushout

f ∈S

1 X

f ∈S

J L(X, S)
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Observe that if X = C is an ∞-category, then L(X, S) is Joyal-equivalent to C[S−1], which
was defined by choosing an inner-anodyne map L(C, S) → C[S−1] to obtain an ∞-category.
Since the initial vertex map takes a morphism in WX to a degenerate edge in X, one can
clearly extend the corresponding map �1 → X over the inclusion �1 → J . In particular,
we obtain an induced map L(N(�

op
/X),WX) → X, and we claim that this map is a Joyal

equivalence for every simplicial set X. Once this is shown, the theorem is proved by the
above observation.

We denote the functor from simplicial sets to marked simplicial sets, sending X to
(N(�

op
/X),WX), by F . We will use the following properties, whose verification we leave

as an exercise:

(1) The functor LF preserves colimits.
(2) The functor LF preserves monomorphisms.
(3) The initial vertex maps assemble into a natural transformation LF ⇒ id.

Let us now suppose that the theorem is shown for C = �n and let X be an arbitrary
simplicial set. We write X as the colimit over its skeleta skn(X) and obtain the map

L(N(�
op
/X),WX) ∼= colim

n
L(N(�

op
/skn(X)

),Wskn(X)) → colim
n

skn(X) ∼= X,

where we use the initial vertex map in each step. We leave it as an exercise to show that the
required diagrams commute. If we can show that each initial vertex map

L(N(�
op
/skn(X)),Wskn(X)) → skn(X)

is a Joyal equivalence, then the same applies to the above map by yet another exercise.
Next, we perform an induction over the dimension n. The induction start forces X to be

a disjoint union of �0’s, and since the initial vertex map commutes with disjoint unions, this
map is a Joyal equivalence by assumption.

For the induction step, we consider the pushout

Jn

n skn−1(X)

Jn

n skn(X)

and recall that the initial vertex map commutes with colimits. By induction and assumption,
the initial vertex map is a Joyal equivalence on the corners except the lower right corner.
However, since the functor L(N(�

op
/(−)

),W(−)) preserves colimits and monomorphisms, it
follows from Exercise 100 that this map is also a Joyal equivalence.
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Now we have reached the second step of the proof, where we need to show the statement
of the theorem for �n. Observe that in this case, the initial vertex map

N(�
op
/�n) → �n

is the map induced on nerves of the functor �op/�n → [n] sending f : [m] → [n] to f (0).
Its effect on morphisms is given as follows: Given a composite [k] → [m] → [n], where the
composite is g and the latter map is f , we need to find a morphism in [n] from f (0) to g(0).
In other words, we need to show that f (0) ≤ g(0). But we have g(0) = f (h(0)) ≥ f (0),
because both f and h are monotonically increasing.

Next, we construct a functor in the other direction [n] → �
op
/�n as follows: The object

i of [n] is sent to the map �{i,...,n} → �n. Clearly, if i ≤ j , then there is a commutative
diagram

{i,...,n} n

{j,...,n}

so we get a functor as desired. One can immediately check that its composition with the
initial vertex map is given by the identity. Let us now consider the composite

�
op
/�n

IV→ [n] i→ �
op
/�n .

We claim that there is a canonical natural transformation from this composite i ◦ IV to the
identity functor. Indeed, the composite is given by sending f : [m] → [n] to the canonical
inclusion {f (0), . . . , n} → [n], where the canonical commutative triangle

{0, . . . ,m} {0, . . . , n}

{f (0), . . . , n}

f

f

provides the components of this natural transformation (left vertical map). We observe that
these components are all contained in the set W�n .

This construction provides a map of simplicial sets

�1 → Fun(N(�
op
/�n),N(�

op
/�n))

restricting to i ◦ IV on 0 and to the identity on 1. Post-composing with the localization map
N(�

op
/�n) → N(�

op
/�n)[W−1

�n ] and recalling that i ◦ IV sends W�n to equivalences, we obtain
a map

�1 → Fun(N(�
op
/�n)[W−1

�n ],N(�
op
/�n)[W−1

�n ]).
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This map is a natural equivalence due to the fact that the components of the above
transformation are contained in the set W�n . We have thus constructed functors

N([n]) → N(�
op
/�n)[W−1

�n ] → N([n]) → N(�
op
/�n)[W−1

�n ]

such that both composites are naturally equivalent to the identity functor. Hence, the initial
vertex map is a Joyal equivalence as desired. ��

Corollary 3.3.9
Let p : E → C be a cocartesian fibration. By inverting the above equivalence, we obtain
a functor

C
�←− N(�

op
/C)[W−1

C ] −→ Cat∞,

called the straightening of the cocartesian fibration p.

We conclude this section with the straightening-unstraightening equivalence
of Lurie (without giving a proof of it). Informally, it says that the straightening
construction of Corollary 3.3.9 induces an equivalence of suitable ∞-categories.
In order to make a precise statement, let us denote by CoCart(C) the subcategory
of the slice (Cat∞)/C on objects which are cocartesian fibrations E → C

and whose morphisms are the morphisms of cocartesian fibrations according to
Definition 3.1.26.

Theorem 3.3.10
For every ∞-category C, there is an equivalence of ∞-categories

CoCart(C) � Fun(C,Cat∞).

On objects, this equivalence implements our previous construction.

Definition 3.3.11
Consider the ∞-category C = Cat∞ and the identity functor. By Theorem 3.3.10,
this corresponds to a cocartesian fibration over Cat∞, called the universal cocartesian
fibration. It is a functor (Cat∞)∗� → Cat∞, where (Cat∞)∗� is an ∞-category whose
objects are pairs (C, x), with x being an object of C, and morphisms from (C, x) to (D, y)

consist of pairs (F, α), with F : C → D and α : y → Fx being a morphism inD.
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Remark 3.3.12
Constructing the ∞-category (Cat∞)∗� is not easy, since it involves the composition
in an ∞-category which is not strict. There are ways to work around this issue, but we
will not get into the details here, see [RV18, Remark 6.1.19]. The idea is to consider the
coherent nerve of the simplicial category of ∞-categories N(Cat1∞) without passing to
the groupoids of the functor categories. This is a simplicial set, and one can form its
slice under the point. The result is a map of simplicial sets N(Cat1∞)�0� → N(Cat1∞).

By construction, there is also a functor Cat∞ → N(Cat1∞), and the pullback of the slice
projection turns out to be a cocartesian fibration.

Remark 3.3.13
In general, one would like to have, for each cocartesian fibration E → D and each
∞-category C, a functor Fun(C,D) → CoCart(C) given on objects by pulling back the
given cocartesian fibration. Then the statement that E → D is universal translates into
the property that this functor is an equivalence of ∞-categories. Such a construction is
done in [RV18, Theorem 6.1.13].

Remark 3.3.14
By means of the universal cocartesian fibration, we can also say what the equivalence

CoCart(C) � Fun(C,Cat∞)

does to a functor F : C → Cat∞: It sends it to the pulled-back cocartesian fibration
F ∗p : F ∗(Cat∞)∗� → C.

The following lemma will be useful to us soon.

Lemma 3.3.15
Let f : C → D be a fully faithful functor between ∞-categories. Then for any
simplicial set K , the induced functor Fun(K,C) → Fun(K,D) is again fully faithful.

ProofWe first observe that a functor f is fully faithful if and only if the diagram
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is homotopy-cartesian. When applying the functor Fun(K,−) to this diagram, note that it
preserves homotopy-cartesian diagrams. By using the equivalence Fun(K,Fun(�1,C)) ∼=
Fun(�1,Fun(K,C)), the lemma follows. ��

Recall from Corollary 2.5.38 that the canonical functor Spc → Cat∞ is fully
faithful. From Lemma 3.3.15, it follows that for any ∞-category C, the functor

Fun(C,Spc) → Fun(C,Cat∞)

is also fully faithful. In particular, under the above equivalence, the ∞-category
Fun(C,Spc) must correspond to some full subcategory of CoCart(C). This subcate-
gory is given by the following theorem.

Theorem 3.3.16
For every ∞-category C, the straightening–unstraightening equivalence restricts to an
equivalence

LFib(C) � Fun(C,Spc),

where LFib(C) denotes the full subcategory of the slice (Cat∞)/C on left fibrations.

Proof Under the straightening-unstraightening equivalence, the functor C → Spc → Cat∞
corresponds to a cocartesian fibration E → C whose fibres are ∞-groupoids. Hence E → C

is a left fibration by the dual version of Proposition 3.1.23. Since any morphism E → E′ over
C preserves cocartesian edges (since every edge is cocartesian by Lemma 3.1.22), this is in
fact the full subcategory of the slice category as claimed. ��

The following result is almost a corollary of the above theorem.

Theorem 3.3.17
Let X be an ∞-groupoid. Then the straightening–unstraightening equivalence restricts
to an equivalence

Spc/X � Fun(X,Spc).

Proof By Theorem 3.3.16, we need to show that there is a canonical equivalence LFib(X) �
Spc/X . Since X is an ∞-groupoid, any left fibration E → X is in fact a Kan fibration.
In particular, E is itself a Kan complex. We thus find that the category LFib(X) is the full
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subcategory of the slice (Cat∞)/X whose objects consist of Kan fibrations. We obtain the
following diagram:

The functor Spc/X → (Cat∞)/X is fully faithful, because the functor Spc → Cat∞ is fully
faithful by Corollary 2.5.38, see Corollary 3.3.19. It follows that the functor LFib(X) →
Spc/X is also fully faithful. Furthermore, any map Y → X between ∞-groupoids is
equivalent to a Kan fibration. This implies that the inclusion LFib(X) → Spc/X is essentially
surjective and fully faithful, and thus an equivalence as needed. ��

Before we can establish Corollary 3.3.19 which is required to complete the
above proof, we will need the following analysis of the mapping spaces in slice ∞-
categories. This statement will also be used again later. The dual version is [Lur09,
Lemma 5.5.5.12].

Proposition 3.3.18
Let C be an ∞-category, and let f : x → z and g : y → z be morphisms in C, viewed
as objects of C/z. Then the diagram

is homotopy-cartesian.

ProofRecall that the map g∗ : mapC(x, y) → mapC(y, z) is constructed as follows. We have
the two canonical restriction functors

C/y
�← C/g → C/z,

the first of which is an equivalence. Inverting this equivalence and taking fibres over x in C,
we obtain

C/y ×C {x} � C/g ×C {x} → C/z ×C {x},
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where the first and the last term are given by mapR
C
(x, y) and mapR

C
(x, z), respectively. We

then consider the diagram

where both the right square and the big square are pullbacks. Hence all squares are pullbacks.
Furthermore, since the very right vertical map is a right fibration, the middle vertical map is
a right fibration whose target is an ∞-groupoid. Hence, the middle vertical map is a Kan
fibration and models the map given by post-composition with g. It remains to show that there
is a canonical equivalence

mapC/z
(f, g) � C/g ×C/z

×{f }.

For this, we observe that (C/z)/g ∼= C/g , so the claim follows. ��

Corollary 3.3.19
Let C ⊆ D be a full subcategory and let z be an object of C. Then the canonical functor
C/z → D/z is again fully faithful.

Proof Let f : x → z and g : y → z be objects of C/z. We wish to show that the map

mapC/z
(f, g) → mapD/z

(f, g)

is a homotopy equivalence. By Proposition 3.3.18, it suffices to prove that in the diagram

both horizontal maps are equivalences. But this follows from the assumption that f is fully
faithful. ��



4Limits, Colimits, and Quillen’s Theorem A

4.1 Terminal and Initial Objects

In this section, we will discuss terminal and initial objects, as a warm-up for the
later notion of limits and colimits in ∞-categories. We will give several standard
equivalent characterizations for an object being terminal or initial, respectively.

Definition 4.1.1
Let C be an ∞-category. An object x is said to be initial if for all objects y of C, the
mapping space mapC(x, y) is contractible. Likewise, x is said to be terminal if it is initial
in Cop, i.e., if for all other objects y, the mapping space mapC(y, x) is contractible.

It will be useful to have the following characterizations.

Lemma 4.1.2
Let C be an ∞-category and x in C an object. Then the following conditions are
equivalent:

(1) x is terminal.
(2) The functor C/x → C is a trivial fibration.
(3) For every n ≥ 1, every lifting problem

(continued)
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Lemma 4.1.2 (continued)

admits a solution.

Proof In order to show that (1) and (2) are equivalent, we consider the diagram

and we wish to show that the horizontal map is a trivial fibration. We already know that
it is a right fibration, so it suffices to show that it is a Joyal equivalence if and only if x

is terminal. By Theorem 3.1.27, this map is a Joyal equivalence if and only if it is a Joyal
equivalence fibrewise, which amounts to saying that, for all objects y of C, the canonical map
mapR

C(y, x) → �0 is a Joyal equivalence.
In order to see that (2) and (3) are equivalent, we observe that the map

∂�n−1 � �0 �∂�n−1�∅ �n−1 � ∅ −→ �n−1 � �0

is isomorphic to the map

∂�n → �n.

Hence the lifting problem

is equivalent to the lifting problem
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Therefore, the lemma follows. ��

The following result tells us that initial and terminal objects, if they exist, are
unique up to contractible choices.

Proposition 4.1.3
Let C be an ∞-category and let Cterm be the full subcategory spanned by all terminal
objects. Then Cterm is either empty or a contractible Kan complex.

Proof Suppose that Cterm is not empty. We need to show that any lifting problem

has a solution. If n = 0, a solution exists by the assumption that Cterm is not empty. If n ≥ 1,
we use (3) of Lemma 4.1.2, which is possible since, in particular, the object �{n} of ∂�n is
mapped to a terminal object. ��

Lemma 4.1.4
Let C be an ∞-category. Then an object x of C is initial if and only if the map x : �0 →
C is left-anodyne. Dually, x is terminal if the map �0 → C is right-anodyne.

ProofWe prove the statement for initial objects; the case for terminal objects is obtained by
passing to opposite categories. We first observe that for any monomorphism S → T , the map
S � �0 → T � �0 is right-anodyne, and the map �0 � S → �0 � T is left-anodyne: To see
this, it suffices to treat the case where S → T is a boundary inclusion ∂�n → �n, in which
case the maps in question become �n+1

n+1 → �n+1 and �n+1
0 → �n+1. Now let us assume

that x is initial. By the version of Lemma 4.1.2 for initial objects, we find that Cx/ → C is a
trivial fibration. We choose a section s : C → Cx/ and consider the diagram

where ŝ is the adjoint map of s. It follows that both horizontal composites are the identity.
Therefore, the map �0 x→ C is a retract of the map �0 � x, which is left-anodyne by our first
observation.
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Conversely, assume that �0 x→ C is left-anodyne. We can consider the diagram

and find a dashed arrow s making the diagram commute. We will show that x is initial by
establishing (3) of Lemma 4.1.2. We thus consider a diagram

By construction, we have s(x) = idx , so it is an initial object of Cx/ by Exercise 135. Hence
the dotted arrow exists, and thus also a dashed arrow. ��

Proposition 4.1.5
Let C be an ∞-category and let K be a simplicial set. Suppose to be given a functor
F : K → C such that for all objects x of K , the object F(x) is initial, respectively
terminal, in C. Then F is initial, respectively terminal, in Fun(K,C).

ProofWe show the case of terminal objects. We need to prove that for all n ≥ 1, any lifting
problem
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admits a solution. By adjunction, this corresponds to the lifting problem

where now by assumption the further restriction of the top horizontal composite along any
object x : �0 → K is a terminal object of C. We consider the filtration Fk(K) = skk(K ×
�n) ∪ K × ∂�n, and we wish to solve the following extension problem inductively:

For this, it suffices to observe that for all i ∈ I (k), the composite fk−1◦ai sends the vertex {k}
to a terminal object in C. By definition, I (k) consists of those non-degenerate k-simplices of
K ×�n which are not contained in K × ∂�n, in other words, it consists in particular of pairs
(αi, βi) ∈ Kk ×�n

k such that b : [k] → [n] is surjective. In particular, βi sends the object {k}
to {n}. Hence fk−1(ai ({k})) = F̂ (αi({k}, {n})), which is a terminal object by assumption.
Hence the dashed arrow exists. By passing to the colimit over k, the proposition follows. ��

The converse of Proposition 4.1.5 is almost true, as the following lemma reveals.

Lemma 4.1.6
Suppose that Cterm is not empty. Then any terminal object of Fun(K,C) takes values in
Cterm.

Proof Let x be a terminal object and consider the constant functor cx with value x. By
Proposition 4.1.5, cx is a terminal object of Fun(K,C). By Proposition 4.1.3, any other
terminal object T of Fun(K,C) is equivalent to cx . In particular, for any object k of K ,
we have that T (k) is equivalent to cx(k), and is therefore terminal. ��
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4.2 The Yoneda Lemma for∞-Categories

In this section, we will prove the∞-categorical version of the Yoneda lemma. Using
the straightening-unstraightening equivalence which we discussed in Sect. 3.3,
we construct a bivariant mapping-space functor Cop × C → Spc by means of
the twisted arrow category, following Lurie’s construction in [Lur17]. We then
formulate and sketch a proof of the Yoneda lemma in the language of left fibrations.
Additionally, we indicate how one can deduce from this lemma that the functor
C → Fun(Cop,Spc) associated with the bivariant mapping-space functor is fully
faithful, which is why this functor is called the Yoneda embedding.

To begin, we wish to show that for every ∞-category C, there is a Yoneda
functor C → Fun(Cop,Spc) which should send an object x of C to the functor
y �→ mapC(y, x). Afterwards, we will indicate that this functor is fully faithful,
which is the ∞-categorical version of the Yoneda lemma. The fact that mapC(−, x)

is a functor for every single x is something we already know.

Definition 4.2.1
Let x be an object of an ∞-category C. Then the functor C/x → C is a right fibration and
hence, by Theorem 3.3.16 (applied to Cop), it is equivalently given by a functor Cop →
Spc sending y to C/x ×C {y} � mapC(y, x). We shall denote this functor by mapC(−, x).

Our task now is to specify that the functors mapC(−, x) are functorial in x. We
begin with a construction.

Lemma 4.2.2
The association [n] �→ [n] � [n]op ∼= [2n + 1] extends to a functor � → �. In
particular, sending [n] to �n � (�n)op is a cosimplicial object in simplicial sets, i.e., a
functor � → sSet.

Definition 4.2.3
Let C be an ∞-category. We define its twisted arrow category Tw(C) as the simplicial set

Tw(C)n = HomsSet(�
n � (�n)op,C),

where the simplicial structure comes from the cosimplicial object [n] �→ �n � (�n)op.
The inclusions �n → �n � (�n)op ← (�n)op determine a functor

Tw(C) −→ C × Cop.
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The proof for the following proposition is taken from [Lur17, Proposi-
tion 5.2.1.3].

Proposition 4.2.4
For an ∞-category C, the functor

Tw(C) −→ C × Cop

is a right fibration. In particular, Tw(C) is again an ∞-category.

Proof Let 0 < k ≤ n, and consider a lifting problem

Unravelling the definition of the twisted arrow category, this corresponds to the lifting
problem

where K is the sub-simplicial set of �2n+1 consisting of those faces σ which satisfy any of
the following three properties:

(1) σ is contained in �{0,...,n} ⊆ �2n+1.
(2) σ is contained in �{n+1,...,2n+1} ⊆ �2n+1.
(3) There exists j �= k, with 0 ≤ j ≤ n, such that neither j nor 2n + 1 − j is a vertex of σ .

Since C is an∞-category, it suffices to show that the inclusion K → �2n+1 is inner-anodyne.
We call a simplex σ primary, if it is not contained in K and its vertices are contained in the
set {k, . . . , 2n + 1}; correspondingly, we call σ secondary if it is not contained in K and not
primary. We let S be the set containing the following simplices τ of �2n+1:

(1) τ is primary and k is not a vertex of τ ;
(2) τ is secondary and 2n + 1 − k is not a vertex of τ .

Given a simplex τ in S, we let τ ′ be the simplex obtained by adding the vertex k if τ is
primary, and by adding 2n + 1− k if τ is secondary. We observe that each simplex of �2n+1

is either contained in K , in S, or is of the form τ ′ for a unique τ in S: If it is neither contained
in K or S, then it must be either primary and contain k as vertex, or be secondary and contain
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2n+1− k as vertex, and in either case, one can remove the vertex k or 2n+1− k and obtain
a primary or secondary simplex as needed.

We now choose an ordering {σ1, σ2, . . . , σm} of S with the following two properties:

(1) If p ≤ q, then dim(σp) ≤ dim(σq).
(2) If p ≤ q and dim(σp) = dim(σq) and σq is primary, then σp is primary as well.

For 0 ≤ q ≤ m, we let Kq be the sub-simplicial set of �2n+1 obtained from K by adding the
simplices σp and σ ′

p for 1 ≤ p ≤ q. Clearly, we have Km = �2n+1, so we obtain a filtration

K → K1 → K2 → · · · → Km = �2n+1,

and it will suffice to show that for each q, the map Kq−1 → Kq is inner-anodyne. Since
Kq is obtained from Kq−1 by adding the simplices σq and σ ′

q , and since σ ′
q contains σq , it

suffices to show that there is a pushout

where d is the dimension of σ ′
q and 0 < j < d. For this, we need to check which of the faces

of σ ′
q are already contained in Kq−1, and argue that precisely one inner face is not contained

in Kq−1. ��

Definition 4.2.5
For every ∞-category, we denote by mapC(−,−) : Cop×C → Spc the functor associated
with the right fibration Tw(C) → C × Cop.

Remark 4.2.6
We could also go a different route: If we only wanted to construct a mapping functor
mapC(−,−) : Cop × C → Spc, we could observe that by definition Spc = N(Kan).
Therefore, such a functor is equivalently given by a simplicial functor C[Cop × C] →
Kan. We could then consider the composite

C[Cop × C] → C[C]op × C[C] → Kan,

where the first part is given by the canonical map and the second part by the simplicial
mapping space followed by a functorial Kan-replacement. The confirmation that this
version of a bivariant mapping-space functor is (at least pointwise) equivalent to our
approach is given by [Lur09, Theorem 1.1.5.13].



4.2 The Yoneda Lemma for ∞-Categories 213

Lemma 4.2.7
For an∞-category C and every object x of C, there is a canonical commutative diagram

This diagram is homotopy-cartesian. In other words, the induced map C/x → Tw(C)x

is a Joyal equivalence between right fibrations over C.

ProofWe recall that the n-simplices of Tw(C)x are given by those maps �n � (�n)op → C

whose restriction along the inclusion (�n)op → �n�(�n)op are the map which is constant at
the object x of C. Then we define an auxiliary simplicial set M, whose n-simplices are given
by maps �n ��0 �(�n)op → C, whose restriction along ∅��0 �(�n)op → �n ��0 �(�n)op

is constant at x. The obvious inclusions define maps

C/x ← M → Tw(C)x,

and the left map admits a section induced from the map �0 � (�n)op → �0. It hence suffices
to show that both of the above maps are Joyal equivalences. This is done by showing that both
maps are trivial fibrations, i.e., that they satisfy the lifting property with respect to boundary
inclusions. Let us start with the case M → C/x , by considering a lifting problem

Unravelling the definitions shows that this is equivalently given by a lifting problem

where K denotes the smallest sub-simplicial set containing �n � �0 � ∅, ∅ � �0 � �n, and
�I ��0�(�I )op, for every proper subset I ⊆ [n]. By Theorem 2.5.14, it suffices to show that
the inclusion K → �n � �0 � �n is a Joyal equivalence. First, we claim that the composite

�n � �0 ��0 �0 � �n → K → �n � �0 � �n
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is a Joyal equivalence. In order to see this, we consider the diagram

where the upper horizontal map is an isomorphism and the lower horizontal map is the map
under investigation. It hence suffices to show that the vertical maps are Joyal equivalences.
For the right-hand side, this follows from the fact that the spine inclusion is inner-anodyne
by Proposition 1.3.22 and thus a Joyal equivalence by Corollary 2.2.13. For the left vertical
map, we argue likewise for the maps In+1 → �n+1 and then use Corollary 2.5.8 to conclude
that the map on pushouts is also a Joyal equivalence. It now suffices to show that the map

�n � �0 ��0 �0 � �n → K

is a Joyal equivalence. We denote by K0 the sub-simplicial set of K spanned by the simplices
of the form �I � �0 � (�I )op, with I ⊆ [n] a proper subset. Since the diagram

n 0
0

0 n K0

n 0
0

0 n K

j

is a pushout, it suffices to show that the map j is a Joyal equivalence. But this map is a colimit
of maps of the form

�I � �0 ��0 �0 � (�I )op → �I � �0 � (�I )op

which we have just argued to be Joyal equivalences. We thus conclude that the mapM → C/x

is a Joyal equivalence.
It remains to prove that the mapM → Tw(C)x is also a Joyal equivalence. Since the proof

is very similar in spirit to the one of Proposition 4.2.4, we will refrain from spelling out the
details and refer to [Lur17, Proposition 5.2.1.10] instead. ��

Corollary 4.2.8
For every object x, the composite C × {x} → C × Cop → Spc is equivalent to the
functor mapC(−, x).

Proof The first functor is the one associated to the right fibration Tw(C)x → C, whereas
the other one is associated to the right fibration C/x → C. By Lemma 4.2.7 and
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Proposition 2.5.27, these right fibrations are equivalent. Hence the claim follows from the
straightening-unstraightening equivalence (Theorem 3.3.16). ��

Definition 4.2.9
Let C be an ∞-category. The functor mapC(−,−) : Cop ×C → Spc is adjoint to a functor
Y : C → Fun(Cop,Spc) which we call the Yoneda functor.

The following result is the ∞-categorical version of the Yoneda lemma.

Proposition 4.2.10
Let F : C → Spc be a functor and let x be an object of C. Then the canonical map

mapFun(C,Spc)(mapC(x,−), F) → F(x)

given by evaluation at the identity is an equivalence.

Proof We let p : E → C be the left fibration corresponding to the functor F . Under the
straightening-unstraightening equivalence from Theorem 3.3.16,

Fun(C,Spc) � LFib(C)
full⊆ Cat∞/C,

the left-hand mapping spaces correspond to mapCat∞/C
(Cx/,E). We claim that there is a

canonical equivalence

mapCat∞/C
(Cx/,E) � Funq (Cx/,E),

where q : Cx/ → C is the canonical forgetful functor and Funq (Cx/,E) is as in Defini-
tion 3.2.14 without the superscripts.

Taking this for granted for the moment, we need to show that the map

Funq (Cx/,E) → Funidx (�
0,E) ∼= Ex

is an equivalence. For this purpose, recall that by construction of the straightening-
unstraightening equivalence, there is a canonical equivalence Ex � F(x). Here, the map
is induced by the canonical map �0 → Cx/ specifying the identity of x. By Exercise 135,
the identity of x is an initial object of Cx/, so that the map �0 → Cx/ is left-anodyne by
Lemma 4.1.4. It then follows from Corollary 3.2.18 that the map in question is a trivial
fibration and thus a Joyal equivalence: Since p : E → C is a left fibration, we find that
Funq(Cx/,E) = Funccq (Cx/,E), and likewise for �0 instead of Cx/.
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It remains to prove the claim about the mapping spaces in Cat∞/C. For this, we invoke
Proposition 3.3.18, which states that the following diagram is homotopy-cartesian:

We now recall from Theorem 2.5.35 that the mapping spaces in Cat∞ are canonically
equivalent to the groupoid cores of the functor categories. Hence, the right vertical map in
the above diagram identifies with the left vertical map in the diagram

Since p is a right fibration, p∗ is also a right fibration by Theorem 1.3.37. Thus, by
Proposition 2.1.3 the map p∗ is conservative, so that the diagram is cartesian by Exercise 78.
Pasting together the two diagrams, we find that the square

is homotopy-cartesian. Since Funq(Cx/,E) is the pullback of this diagram, we find that the
canonical map

mapCat∞/C
(q, p) → Funq (Cx/,E)

is a Joyal equivalence as claimed. ��

With this result, we almost find the usual consequence of the Yoneda lemma,
namely that the Yoneda functor is fully faithful. Henceforth, it will be called the
Yoneda embedding.

Proposition 4.2.11
Let C be an ∞-category. Then the Yoneda functor Y : C → Fun(Cop,Spc) is fully
faithful.
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ProofWe simply calculate that the evaluation map

mapFun(Cop,Spc)(mapC(−, x),mapC(−, y)) −→ mapC(x, y)

is an equivalence by Proposition 4.2.10 and claim that the composite

mapC(x, y)
Y−→ mapFun(Cop,Spc)(mapC(−, x),mapC(−, y)) −→ mapC(x, y)

is also an equivalence. Informally, it is clearly the identity, but a formal proof requires
more effort, which is why we will not work it out here. (See the remark below for more
explanations.) In sum, we obtain that the Yoneda functor induces an equivalence on mapping
spaces, which proves the proposition. ��

Remark 4.2.12
A different way of defining the bivariant mapping-space functor was suggested to us
by Fabian Hebestreit: One can consider the source-target functor Fun(�1,C) → C×C

as a functor over C via the source map and the projection onto the first factor, both of
which are cartesian fibrations. In addition, the source-target map preserves cartesian
morphisms, so the diagram provides a map

�1 −→ Cart(C) � Fun(Cop,Cat∞).

Adjoining, we obtain a functor

Cop −→ Fun(�1,Cat∞)

which, unravelling the definitions, sends x to the projection functor Cx/ → C. Since
this is a left fibration, and since left fibrations are a full subcategory of Fun(�1,Cat∞),
we obtain a functor

Cop −→ LFib(C) � Fun(C,Spc),

which is another candidate for the Yoneda functor, as it sends x to the left fibration
Cx/ → C which represents the functor mapC(x,−). The advantage of this approach is
that it can be shown from the definitions that this Yoneda functor Cop → Fun(C,Spc)
is fully faithful, see Hebestreit’s lecture notes [Heb20, Yoneda’s lemma, adjunctions,
and (co)limits]. Unfortunately, neither of the following two statements are obvious:

(1) The functor Cop × C → Spc as constructed above is equivalent to the one of
Definition 4.2.9 constructed via the twisted arrow category.

(2) The functor Cop × C → Spc as constructed above is equivalent to its dual version,
where we view the source-target map as a map of cocartesian fibrations, using the
target map and the second projection.

It turns out that both statements are true, but their proofs require more tools.
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4.3 Limits and Colimits

In this section, we will give a definition of (co)limits of diagrams in ∞-categories
which was suggested to us by A. Krause and T. Nikolaus and relate it to the usual
notion of (co)limits, i.e., phrased in terms of initial and terminal objects of certain
slice categories. We will prove that (co)limits, if they exist, are unique up to a
contractible space of choices, and show that an ∞-category admits small (co)limits
if and only if it admits small (co)products and pullbacks, respectively pushouts.
Afterwards, we will use these findings to indicate how one can show that the
∞-categories Spc of spaces and Cat∞ of ∞-categories have all small limits and
colimits. We will conclude the section with a selection of properties that (co)limits
have.

The following definition of colimits is taken from Krause–Nikolaus.

Definition 4.3.1
Let F : K → C be a functor and let x be an object of C. We define a simplicial set
MapC(F, x) by the pullback

where the right vertical map is given by restriction along the canonical inclusion K ∪
{∞} ⊆ K � �0.

Lemma 4.3.2
In the above situation, MapC(F, x) is an ∞-groupoid. If F = y : �0 → C, then
MapC(y, x) = mapC(y, x).

Proof Restriction along a monomorphism is a conservative inner fibration, which is stable
under pullbacks. The second part is clear from the definition, since �0 � �0 = �1. ��

Proposition 4.3.3
Let F : K → C be a functor and i : L → K be a map of simplicial sets. Then for all
objects x of C, i induces a map MapC(F, x) → MapC(F i, x). If i is right-anodyne,
then this map is a homotopy equivalence.
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Proof For the proof of the first statement, we observe that there is a commutative diagram

which induces the map of interest on pullbacks. In order to prove that this map is a homotopy
equivalence if i is right-anodyne, we claim that the diagram

is homotopy-cartesian. This is seen by calculating the pullback given by

Fun(L � �0 �L∪{∞} K ∪ {∞},C).

The comparison map is then induced by the canonical inclusion

L � �0 �L∪{∞} K ∪ {∞} → K � �0,

which is inner-anodyne since L → K is right-anodyne, see Lemma 1.4.22. Therefore, the
comparison map is a Joyal equivalence as needed. It follows that the diagram

is also homotopy-cartesian, so that the upper map is a homotopy equivalence as desired. ��

Definition 4.3.4
Let F : K → C be a functor and F̄ : K � �0 → C a cone over F . We say that F̄ is a
colimit cone if for all objects x of C, the canonical map

MapC(F̄ , x) → MapC(F, x)

is a homotopy equivalence.
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Remark 4.3.5
Since the map {∞} → K��0 is right-anodyne, we find that for any cone F̄ : K��0 →
C, the canonical map

MapC(F̄ , x) → MapC(F̄ (∞), x) = mapC(F̄ (∞), x)

is a homotopy equivalence. Hence, F̄ is a colimit cone if and only if, for all objects x

of C, the above maps assemble to a homotopy equivalence

MapC(F, x) � mapC(F̄ (∞), x).

Definition 4.3.6
Dually, for a functor F : K → C, one defines a simplicial set MapC(x, F) as the pullback

As before, a map i : L → K induces a map MapC(x, F) → MapC(x, F i) which is a
homotopy equivalence if i is left-anodyne. A cocone F̄ : �0 � K → C of F is then called
a limit cocone if the canonical map

MapC(x, F̄ ) → MapC(x, F)

is a homotopy equivalence for all x in C.

Remark 4.3.7
Let us compare this definition with the definition of initial and terminal objects. The
goal is to see that an initial object is a colimit of the empty functor ∅ → C: A cone over
the empty functor is simply a functor y : �0 → C. Furthermore, MapC(∅, x) ∼= �0,
and MapC(y, x) = mapC(y, x) by Lemma 4.3.2. Thus we find that an object y, viewed
as a cone over the empty functor, is a colimit cone if and only if, for all objects x,
the mapping space mapC(y, x) is Joyal-equivalent to �0, i.e. is contractible. Thus, a
colimit cone over the empty functor is precisely an initial object. Likewise, a limit
cocone over the empty functor is precisely a terminal object.
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ExampleA colimit over a set (viewed as a discrete category) is called a coproduct.
A limit over a set is called a product.

ExampleA colimit of �2
0 → C is called a pushout. A limit of �2

2 → C is called a
pullback. Notice that �2

0 � �0 ∼= �1 × �1 and likewise that �0 � �2
2

∼= �1 × �1.

In Lemma 4.1.2, we characterized initial and terminal objects in terms of certain
maps between slices to be trivial fibrations. We will now head towards a similar
description for general colimits and limits. To get started, we have the following
lemma.

Lemma 4.3.8
For any two simplicial sets K and S, there is a canonical isomorphism

K � S ∼= [(K � �0) × S] �K×S K

compatible with the maps from K and S.

Proof Consider the diagram

K × 1 × S K × 1 × S K × S S

K 1 S K 1 S K S

whose pushouts are given by (K � �0) × S and K � S, respectively. We thus find that the
right of the small squares in the diagram

K × S K × S S (K 0) × S

K K S K S

is a pushout. The left square is a pushout by inspection, hence the combined square is a
pushout as well. ��
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Lemma 4.3.9
Let F : K → C be a functor and let x be an object of C. Then the diagrams

are homotopy-cartesian.

ProofWe argue for the left-hand square, the other case is analogous. We first show that there
is a pullback diagram

For the time being, let us call the pullback 
(F). For a simplicial set S, a map to CF/

corresponds to a map K � S → C, whereas a map to 
(F) corresponds to a map

(K � �0) × S �K×S K → C.

Thus we conclude this first part of the proof by Lemma 4.3.8.
Next, we define a simplicial set CF� by the pullback

From the canonical map K � �0 → K � �0, we obtain maps

CF� → CF/ ← CF/

and we claim that both are Joyal equivalences: The right map was dealt with in Proposi-
tion 2.5.27, and for the left map, this follows again from the fact that the map K � �0 →
K � �0 is a Joyal equivalence, and that the pullbacks involving CF/ and CF� are invariant
under Joyal equivalences by Lemma 2.5.7. We then consider the diagram
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consisting of pullback diagrams. The claim then follows from the fact that there is a Joyal
equivalence CF� � CF/. ��

Remark 4.3.10
One could define a variant of MapC(F, x) by using the fat join instead of the ordinary
join. The resulting ∞-groupoid M̃apC(F, x) is canonically equivalent to MapC(F, x),
and we will freely exchange the two whenever it is useful. The proof of Lemma 4.3.9
then shows that for this variant, the following diagram is a pullback:

The following theorem states that our definition of limits and colimits coincides
with the definition that is usually given, e.g., in [Lur09].

Theorem 4.3.11
Let F : K → C be a diagram in an ∞-category C. A cone F̄ : K � �0 → C of F is a
colimit cone if and only if it is an initial object of CF/. Dually, a cocone F̄ : �0�K → C

of F is a limit cocone if and only if it is a terminal object of C/F .

ProofA cocone F̄ gives rise to a commutative diagram

of left fibrations. By Exercise 142, F̄ is an initial object if and only if the horizontal map is a
trivial fibration, which is the case if and only if it is a Joyal equivalence. By Theorem 3.1.27,
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this is the case if and only if the induced map on fibres over objects x of C is a homotopy
equivalence. By Lemma 4.3.9, the induced map on fibres is equivalent to the map

MapC(F̄ , x) → MapC(F, x).

We thus find that the map CF̄ / → CF/ is a Joyal equivalence if and only if F̄ is a colimit
cone of F . The argument for limits is the same, using the dual version of Lemma 4.3.9. ��

The following result will be very useful for our later purposes.

Proposition 4.3.12
Let C be an ∞-category and consider a pushout of simplicial sets

where the map i is a monomorphism. Let F : K → C be a functor, and denote by FA,
FB , and FC its restriction to A, B and C, respectively. Then, for each object x of C, the
diagram

is homotopy-cartesian.

ProofWe may replace MapC(F, x) by M̃apC(F, x), i.e. the version using the fat slice. First,
we observe that the diagram is a pullback, because M̃apC(F, x) is defined as a fibre which
commutes with pullbacks, and both functors Fun(−,C) and Fun(−,C) × C send pushouts to
pullbacks. Then we can use the fact that − � �0 also preserves pushouts. It hence suffices to
show that the map M̃apC(FB, x) → M̃apC(FA, x) is a Kan fibration. By a previous remark,
there is a pullback diagram
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so it suffices to recall that the map CFB/ → CFA/ is a left fibration and that its pullback is
therefore a left fibration between Kan complexes, and thus a Kan fibration. ��

Again, we find that (co)limits, if they exist, are unique up to a contractible space
of choices.

Lemma 4.3.13
Let p : K → C be a diagram. Let (Cp/)

colim ⊆ Cp/ and (C/p)lim ⊆ C/p be the
full subcategories spanned by colimit cones and limit cocones, respectively. Then
(Cp/)

colim, respectively (C/p)lim, are either empty or contractible Kan complexes.

Proof This is merely a reformulation of the case for initial and terminal objects, see
Proposition 4.1.3. ��

The following result will be required later on when we show that the formation
of colimits (if possible) is a functor.

Proposition 4.3.14
Let K be a simplicial set, F : K → C a functor, and x an object of an ∞-category C.
Then there is a canonical isomorphism of simplicial sets

M̃apC(F, x) � mapFun(K,C)(F, constx)

and therefore a canonical homotopy equivalence

MapC(F, x) � mapFun(K,C)(F, constx)

Proof The second assertion follows from the canonical homotopy equivalence
MapC(F, x) � M̃apC(F, x) of Remark 4.3.10. To see the first assertion, we claim that
the diagram

is cartesian, where we view F as a functor �0 → Fun(K,C) as well. Then, under the
assumption that our claim is true, pulling back along a map x : �0 → C, we obtain an
isomorphism

M̃apC(F, x)
�→ mapFun(K,C)(F, constx)
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as desired. In order to see the claim, note that a map X → CF/ corresponds to a map X �
K → C whose restriction to K is F . Likewise, a map to the pullback of the above diagram
corresponds to a map

(X � �0) × K �X×K X → C,

restricting also appropriately. Then the claim follows again from Lemma 4.3.8. ��

Lemma 4.3.15
Let C be an ∞-category and īd : C � �0 → C a cone over the identity of C. Then īd is
a colimit cone if and only if īd(∞) is a terminal object. In particular, C has a terminal
object if and only if the identity functor has a colimit.

Proof Suppose that t is a terminal object of C. Consider the composite {t} → C → C, where
the latter functor is the identity. We obtain an induced functor on slices Cid/ → Ct/ which is
a trivial fibration, since the inclusion {t} → C is right-anodyne by Lemma 4.1.4. Since Ct/

has an initial object, the same applies to Cid/. Hence by Theorem 4.3.11, t is a colimit of the
identity functor. Conversely, let us assume that the identity has a colimit cone īd. We need
to show that x = īd(∞) is a terminal object. For this, we will allude to Lemma 4.1.2 and
consider a lifting problem

where the upper composite is given by the object x. By applying the functor − � �0 to this
diagram, we obtain

The composite �{n,n+1} → C is a morphism in C from x to x, and we claim that this
morphism is an equivalence (the justification of this claim will follow momentarily). Hence
a dashed arrow exists by Joyal’s lifting theorem Theorem 2.1.8.

As for the proof of the claim, we will show that the above morphism extends to a
morphism in Cid/ from īd to itself. Since īd is a colimit cone, it is an initial object of Cid/,
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so that all of its endomorphisms are invertible by Proposition 4.1.3. Now, we consider the
composite

which determines a 1-simplex in Cid, whose source and target are īd. It hence suffices to show
that the induced map on cone points is the one considered above. By construction, we thus
have to analyze the map

�1 → C � �1 → C � �0 → C,

and we have to observe that the map �1 → C � �0 sends 0 to īd(∞) = x and 1 to the cone
point ∞. Therefore, it is given by the map

�1 ∼= �0 � �0 x�id−→ C � �0.

Composing this map with īd is precisely the bended map in the above diagram. ��

The following proposition is a refined version of Proposition 4.3.12.

Proposition 4.3.16
Let C be an ∞-category. Consider a pushout of simplicial sets

A B

C K

i

where the map i is a monomorphism. Let F : K → C be a functor, and denote by FA,
FB , and FC its restriction to A, B and C, respectively. Then the square

is a cartesian and homotopy-cartesian square of left fibrations over C.

Remark 4.3.17
Upon passing to fibres over objects x of C, we obtain the cartesian and homotopy-
cartesian square of Proposition 4.3.12.
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We now interpret the definitions and properties of colimits as follows. First, we
observe that the left fibration CF/ → C corresponds to a functor C → Spc by the
straightening-unstraightening equivalence. Since it takes the value MapC(F, x) on
an object x in C, we simply denote this functor by MapC(F,−).

Definition 4.3.18
A functor C → Spc is called representable if it is equivalent to the functor mapC(x,−)

for some x in C. Any such x will be called a representing object. Equivalently, a functor is
representable by x, if the associated left fibration E → C is equivalent to the left fibration
Cx/ → C.

Proposition 4.3.19
Let F : K → C be a functor. Then F admits a colimit if and only if the functor
MapC(F,−) is representable, and any representing object is a colimit of F .

Proof Suppose that F admits a colimit cone F̄ : K ��0 → C and let x = F̄ (∞). As we have
previously seen, this implies that both functors

CF/ ← CF̄ / → Cx/

are equivalences of left fibrations over C: For the right map, this is always the case, and the
left one is an equivalence if and only if F̄ is a colimit cone.

It hence remains to show that if MapC(F,−) is representable by an object x, then F

admits a colimit. By the assumption, we find an equivalence Cx/ � CF/ of left fibrations
over C. Pick an initial object of Cx/, e.g., the identity of x. Under the above equivalence, this
object is transported to an initial object of CF/. Any such object is a colimit cone, whose
colimit point is x by construction. ��

Corollary 4.3.20
Every diagram F : �n → C admits both a limit and a colimit, where a limit is given by
evaluation on 0, and a colimit is given by evaluation on n.

Proof It suffices to recall that these inclusions induce equivalences of left/right fibrations
CF/ � CF(n)/ and C/F � C/F (0) , respectively, so that both CF/ and C/F are representable
left fibrations or right fibrations, respectively. ��
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Proposition 4.3.21
Let F : K → C be a functor, let i : L → K be a map of simplicial sets, let F̄ be a
colimit cone of F , and let Fi be a colimit cone of Fi. Furthermore, let G : �1 → CFi/

be a map with G(0) = Fi and G(1) = F̄ i, let g be the composite �1 → CFi/ → C,
and let g(0) = x and g(1) = y. Then there is a commutative diagram

and y and x are a colimit of F and Fi, respectively. The resulting map

Cy/ → Cx/

is given by precomposition with the map g, which we call the induced map x =
colimL Fi → colimK F = y.

Remark 4.3.22
The obvious dual situation for limiting cocones holds as well.

Observation 4.3.23
Informally, we summarize the above situation by saying that there is a commutative
diagram

where the vertical maps are the equivalences coming from the fact that y is a colimit of
F and x is a colimit of Fi. Of course, this diagram does not actually commute, but it
commutes up to an invertible natural transformation. On the other hand, we could also
take this diagram as a definition for the morphism g : x → y. Namely, by inverting the
map CF/ → Cy/, we obtain a functor Cy/ → Cx/ which makes the diagram commute.
By the Yoneda lemma, such a functor is equivalently given by an object of Cx/×C{y} �

(continued)
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4.3.23 (continued)
mapC(x, y), which is going to be a morphism equivalent to the morphism g of the
previous proposition. The advantage of this approach is that it shows how the morphism
g canonically lifts to a morphism between cones over Fi.

Lemma 4.3.24
Let I be a discrete category and let F : I → C be a diagram, i.e., a collection xi of
objects of C. Then there is a canonical equivalence

MapC(F, y) �
∏

i∈I

mapC(xi, y)

between functors C → Spc in y.

Proof The following diagram is a pushout:

I × {0 I × {1}
I

1

I 0

Thus in the following diagram, both small squares are pullbacks:

Therefore, the big square is also a pullback.
Since pullbacks commute with arbitrary products, we find that there is an isomorphism

CF/
∼=

∏

I

Cxi /

of left fibrations. This implies the lemma. ��
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Corollary 4.3.25
Let F : �2

0 → C be a diagram, depicted as

x y

z

f

g

and let t be another object. Then there is a homotopy-cartesian square of ∞-groupoids

which is natural in t .

Proof By Proposition 4.3.16 and the fact that �2
0 is the pushout �1 ��0 �1, we find that the

diagram

is cartesian and homotopy-cartesian and consists of left fibrations over C. Furthermore, we
have Cf/ � Cy/ and Cg/ � Cz/. Passing to fibres over a point t , we obtain the statement. ��

Proposition 4.3.26
Let C be an ∞-category and K a simplicial set, written as a pushout B �A C, where
the map A → B is a monomorphism. Let F : K → C be a diagram. Suppose that F|B
has a colimit y, F|A has a colimit x and F|C has a colimit y. If C has pushouts, then a
pushout y �x z is a colimit of F .

Proof In the sequel, we shall follow the reasoning of [Lur09, 4.4.2.2]. Let G : �2
0 → C be

the diagram given by y ← x → z, where the maps originate from Proposition 4.3.21, and let
Ḡ : �1 × �1 → C be a colimit cone of G. We wish to show that w = Ḡ(1, 1) is a colimit of
F : K → C. By Proposition 4.3.19, we have to show that there is an equivalence of functors
between mapC(w,−) and MapC(F,−). In terms of left fibrations, we need to show that there
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is an equivalence of left fibrations Cw/ � CF/. We have Cw/ � CG/, since w is a colimit of
G. Furthermore, there is a homotopy-cartesian square

Since x, y, and z are colimits themselves, we find that there is commutative diagram

where the vertical comparison maps are Joyal equivalences (see Observation 4.3.23). Hence,
there is an induced equivalence on homotopy pullbacks

CG/ � CF/,

so that CF/ is indeed representable, with w a representing object. ��

Proposition 4.3.27
Let F : K → C be a functor, let K = colim

i≥0
Ki be an N-indexed decomposition with

each map Ki → Ki+1 a monomorphism, and let Fi be the restriction of F to Ki .
Suppose that, for all i, the functor Fi admits a colimit and that C admits colimits over
1-dimensional simplicial sets. Then F admits a colimit.

Proof First, we find that there is an isomorphism of left fibrations CF/ → lim
i≥0

CFi/, because

for every simplicial set X, the functor X � − preserves connected colimits. By assumption,
all CFi are corepresentable left fibrations, say CFi/ � Cxi /. We thus obtain canonical maps
Cxi−1/ → Cxi/ which make the comparison diagrams commute. By the Yoneda lemma, all
of these maps corresponds to morphisms αi : xi−1 → xi , and they assemble into a functor
G : I∞ → C. Since I∞ = colimn In, we find that CG/ → lim

i≥0
CGi . Since In has a terminal

object, we find that CGi � CG(i)/ = Cxi /. We obtain commutative diagrams
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where all horizontal maps are Joyal equivalences, and the outer vertical maps are isofibra-
tions. We thus find that the induced map on vertical limits is a Joyal equivalence CG/ � CF/.
Since I∞ is 1-dimensional, we find that C admits I∞-indexed colimits. Hence CG/ is
corepresentable, and thus the same applies to CF/. Therefore, F admits a colimit. ��

Proposition 4.3.28
If an ∞-category C admits small coproducts and pushouts, then it admits all small
colimits.

Proof We follow the reasoning of [Lur09, 4.4.2.6]. Firs, we show that C admits colimits
indexed over finite-dimensional simplicial sets K by induction over the dimension of K . If
K is zero-dimensional, it is simply a discrete set, so that colimits over it are coproducts and
hence exist by assumption. Now suppose that K is n-dimensional, and consider its skeletal
pushout

i∈I

n skn−1(K)

i I

n K

For a functor F : K → C, it suffices by Proposition 4.3.26 to argue that each restriction
of F to any of the other three corners admits a colimit. For skn−1(K) and

∐

i∈I

∂�n, this

follows by the induction hypothesis. It remains to show that any functor
∐

i∈I

�n → C admits

a colimit. By Corollary 4.3.20, we know that every single functor �n → C admits a colimit.
By the same argument, we find that the restriction along all terminal objects provides a Joyal
equivalence

C

∐

i∈I

�n/ �→ CI/,

because the coproduct of right-anodyne maps is again right-anodyne. It hence suffices to
argue that CI/ is equivalent to a representable left fibration, which again follows from the
assumption that C admits coproducts.

Based on this first step, we can then use Proposition 4.3.27 to conclude that C admits K-
shaped colimits for all small simplicial sets K by writing K as the colimit over its skeleta. ��

In the presence of finite coproducts, having pushouts is in fact equivalent to
having coequalizers, as the following lemma reveals.
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Lemma 4.3.29
If an ∞-category C admits finite coproducts, then it admits pushouts if and only if it
admits coequalizers. In particular, if C admits small coproducts and coequalizers, then
it admits all small colimits.

Proof The coequalizer category is the pushout of the diagram �1 ← ∂�1 → �1. Hence
by Proposition 4.3.26, C admits coequalizers if it admits pushouts and finite coproducts. In
order to see the converse, one argues similarly as in Proposition 4.3.26. Namely, suppose that
K ′ is the coequalizer of two morphisms L → K of simplicial sets, and suppose that K ′ → C

is a functor such that the restrictions to K and to L admit a colimit. Then the coequalizer of
the colimits is a colimit of the functor K ′ → C, see [Lur09, 4.4.3.1] or Exercise 143. Based
on this finding, we observe that there is a coequalizer diagram

0 1 1 2
0

where the two maps are the two inclusions as vertex 0. From this, we can deduce that colimits
over �2

0 are given by a coequalizer of two maps between colimits indexed over �0 and
�1 � �1, which exist if C admits finite coproducts. ��

Definition 4.3.30
Let f : C → D be a functor between ∞-categories and let F : K → C be a diagram.
Suppose that F admits a colimit in C. We say that f preserves this colimit, if for some
(and hence any) colimit cone F̄ : K � �0 → C, the resulting diagram K � �0 → C → D

is a colimit cone over f F . Furthermore,
we say that F preserves K-shaped colimits, if for every functor F : K → C which

admits a colimit, F preserves this colimit.

Remark 4.3.31
A functor f : C → D thus preserves K-shaped colimits, if for every functor F : K →
C, the induced functor CF/ → Df F/ preserves initial objects.

Proposition 4.3.32
Let F : C → D be a functor between ∞-categories. Then F preserves small colimits
if and only if it preserves small coproducts and pushouts. The same holds true if one
replaces pushouts by coequalizers.

Proof Exercise 144. ��



4.3 Limits and Colimits 235

We will collect the following properties of colimits without proof (but we
recommend that the reader tries to prove some of them as an exercise).

Proposition 4.3.33
If D is (co)complete and K is a small simplicial set, then Fun(K,D) is again
(co)complete and colimits are calculated pointwise. In other words, for every object
x of K , the evaluation functor Fun(K,D) → D preserves (co)limits.

Proposition 4.3.34
Let C be a (co)complete ∞-category and p : K → C a diagram. Then C/F admits
colimits and the functor C/F → C preserves colimits. Dually, CF/ admits limits and
CF/ → C preserves limits.

Proof [Lur09, 1.2.13.8]. ��

Proposition 4.3.35
Let C be a cocomplete ∞-category and let F : K → C be a diagram. Then CF/ is
again cocomplete. Dually, if C is complete, thenC/F is complete. The forgetful functors,
however, do not preserve these (co)limits in general.

Proposition 4.3.36
Let f : E → C be a left fibration and let K be a weakly contractible simplicial set.
Then f preserves K-shaped colimits. Likewise, right fibrations preserve contractible
limits.

Proof [Lur09, 4.4.2.8 & 4.4.2.9]. ��

For the following theorem, we will later give an independent proof which makes
use of the straightening-unstraightening equivalence. The following proof has the
advantage, however, that we can see that limits and colimits are given as expected.

Theorem 4.3.37
The ∞-categories Cat∞ and Spc admit all small limits and colimits.
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ProofBy Proposition 4.3.28, it suffices to show that these ∞-categories admit small products,
coproducts, pullbacks and pushouts. Coproducts and products are quite easy, as we have seen
earlier. We show that Cat∞ admits pullbacks, all other cases are similar in flavour. For this
purpose, consider a diagram F : �2

2 → Cat∞ given by two functors

D
p→ C

f← C′.

Without loss of generality, we may assume that D → C is an isofibration. We let D′ be
the pullback of the above diagram of simplicial sets and let F̄ : �1 × �1 → Cat∞ be the
whole pullback diagram. We wish to show that Cat/F∞ is a representable right fibration. By the
dual argument of Corollary 4.3.25, we know that there is a cartesian and homotopy-cartesian
square

Furthermore, there is a canonical map Cat/D
′

∞ � Cat/F̄∞ → Cat/F∞ , and we wish to show that
this functor is an equivalence. We will show that it is essentially surjective and fully faithful.
As for the essential surjectivity, an object of C/F can be represented (up to equivalence) by a
commutative diagram of ∞-categories

By the universal property of the pullback D′, E comes with a unique map to D′, which
provides the resulting object of Cat/D

′
∞ . In order to see the full faithfulness, it suffices to

show that for any two objects E,E′ of Cat/D
′

∞ , the following diagram of mapping spaces is
homotopy-cartesian:

But this follows from the description of mapping spaces in slice-categories, from Proposi-
tion 3.3.18, from the fact thatD′ ∼= D×CC′, and from the fact thatD → C is an isofibration.

��



4.4 Cofinal and Coinitial Functors 237

4.4 Cofinal and Coinitial Functors

In this section, we discuss the notion of cofinal and coinitial functors. Informally,
they are functors f : I → J which induce equivalences on colimits and limits,
respectively, for any choice of diagrams J → C. Using the notion of cofinal and
coinitial functors, we will discuss the notion of smooth and proper functors, and we
will show that left fibrations are smooth and that right fibrations are proper. We will
then use this result to give a simple proof of the ∞-categorical version of Quillen’s
Theorem A, which states that cofinal functors can be detected by their behaviour on
slice categories (Theorem 4.4.20).

Definition 4.4.1
Let f : K → L be a map of simplicial sets and p : X → L an inner fibration. As before,
we define an ∞-category by the pullback

If f = id : L → L, then we simply write FunL(L,X) instead of Funid(K,X).

Definition 4.4.2
Let f : K → L be a map of simplicial sets. Then f is called cofinal if for all right
fibrations p : X → Y , the canonical map

FunL(L,X) → Funf (K,X)

induced by f is a Joyal equivalence. Likewise, it is called coinitial if for all left fibrations
p : X → Y , the canonical map

FunL(L,X) → Funf (K,X)

is a Joyal equivalence.

Remark 4.4.3
By construction, Funf (K,X) is an ∞-groupoid if p : X → L is a right fibration or
a left fibration, since in this case its canonical map to �0 is a right fibration or a left
fibration and hence a Kan fibration. In our previous notation, the fact that p : E → C

(continued)
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4.4.3 (continued)

is a left fibration between ∞-categories was written as Funccf (C,E�), because for left
fibrations, any morphism in E is p-cocartesian.

Proposition 4.4.4
Let f : K → L and g : L → M be maps of simplicial sets.

(1) If f is cofinal, then gf is cofinal if and only if g is.
(2) If f is cofinal, then f is a weak equivalence.
(3) If f is a monomorphism, then f is cofinal if and only if it is right-anodyne.

ProofWe prove (1) first. For this purpose, consider a right fibrationD → M and the diagram

where the right horizontal maps are isomorphisms, and the rightmost vertical map is a Joyal
equivalence by the assumption that f is cofinal and the fact that pullbacks of right fibrations
are right fibrations. We thus conclude the statement by the 3-for-2 property.

In order to show (2), it suffices to prove that for any Kan complex X, the canonical map
Fun(L,X) → Fun(K,X) is a homotopy equivalence. Consider the map L × X → L which
is a Kan fibration, and in particular a right fibration. Then we find that FunL(L,L × X) ∼=
Fun(L,X) and that Funf (K,L × X) ∼= Fun(K,X) as needed.

In order to see that a right-anodyne map is cofinal, we claim that the restriction map which
we have to analyze is a trivial fibration. Namely, by adjunction, it suffices to prove that for
any monomorphism S → T , the induced map

S × L ∪ T × K → T × L

is right-anodyne as well, which was established in Lemma 1.3.31. Conversely, suppose that
f is a cofinal monomorphism and let X → Y be a right fibration, and consider a lifting
problem to see whether f is right-anodyne. By pulling back, we may assume that Y = L and
get a diagram

K X

L L
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where we wish to show the existence of the dashed arrow. By assumption, we know that the
morphism

FunL(L,X) → Funf (K,X)

is a Joyal equivalence. If we can show that it is in addition an isofibration, then it is a trivial
fibration by Lemma 2.2.17 and hence surjective on 0-simplices (which shows the existence
of the dashed arrow above). In order to see that it is indeed an isofibration, we first note that
it is an inner fibration, using the facts that the pushout product of an inner-anodyne map with
a monomorphism is inner-anodyne, and that right fibrations are inner fibrations in particular.
It remains to show that any diagram

{1} FunL(L,X)

1 Funf (K,X)

admits a dashed arrow making the diagram commutative. But this is true, since the right
vertical map is conservative (as a functor between ∞-groupoids). Now we use the fact that
the pushout product of a right-anodyne map and a monomorphism is again right-anodyne, so
that a lift exists due to X → L being a right fibration. ��

Corollary 4.4.5
Let f : K → L and g : L → M be maps of simplicial sets.

(1) If f is coinitial, then gf is coinitial if and only if g is coinitial.
(2) If f is a monomorphism, then f is coinitial if and only if f is left-anodyne.

Proof This follows immediately from Exercise 145. ��

Corollary 4.4.6
Among monomorphisms, the left-anodyne and right-anodyne maps satisfy the right-
cancellation property: If f and g are composable morphisms, and both f and gf are
left-anodyne or right-anodyne, respectively, then the same applies to g.

Next, we want to prove an important characterization of cofinal maps, which
builds up on the following lemma.
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Lemma 4.4.7
Let F : L → C be a diagram and x an object of C. Then there is a canonical cartesian
(and homotopy-cartesian) diagram as follows:

ProofAgain, for the time of the proof, let us call the pullback 
(F). Note that a map from a
simplicial set X to 
(F) corresponds to a map

[(X × L) � �0] �X×L L → C

whose restriction to �0 is given by x and whose restriction to L is F . On the other hand, a
map from X to M̃apC(F, x) corresponds to a map

[X × (L � �0)] �X×(L∪{∞}) L ∪ {∞} → C

whose restriction to L ∪ {∞} is the pair (F, x). We claim that there is an isomorphism of
simplicial sets

[(X × L) � �0] �X×L L ∼= [X × (L � �0)] �X×(L∪{∞}) L ∪ {∞}.

For this, we calculate as follows:

[(X × L) � �0] �X×L L ∼=
[
(X × L × �1) �X×L×∂�1 (X × L) � �0

]
�X×L L

∼= (X × L × �1) �X×L×∂�1
(
(X × L) � �0 �X×L L

)

∼= (X × L × �1) �X×L×∂�1 L � �0

∼= (X × L × �1) �X×L×∂�1

(
X × (L � �0) �X×(L��0) L � �0)

∼=
(
(X × L × �1) �X×L×∂�1 X × (L � �0)

)
�X×(L��0) L � �0

∼= X × (L � �0) �X×(L��0) L � �0

This shows the lemma, once we convince ourselves that the inclusions of �0 and L

correspond to each other (which is a simple matter of checking the maps). ��
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Theorem 4.4.8
Let f : K → L be a map of simplicial sets. Then f is cofinal if and only if for each
∞-category C and each diagram p : L → C, the induced map Cp/ → Cpf/ is a Joyal
equivalence.

Proof First, we assume that f is cofinal and show that in this case the map Cp/ → Cpf/ is a
Joyal equivalence. Since this map is a map of left fibrations over C, it suffices to show that the
induced map on fibres over objects x of C is an equivalence. By Lemma 4.4.7, this map can
be identified (up to homotopy equivalence) with the map Funp(L,C/x) → Funpf (K,C/x),
which is an equivalence because C/x → C is a right fibration and f is cofinal. Conversely,
assume that Cp/ → Cpf/ is a Joyal equivalence for any diagram p : L → C, and let X →
L be a right fibration. By the straightening-unstraightening equivalence, there is a functor
p : L → Spcop whose pullback of the universal right fibration is equivalent to X → L. Now
we use the fact that the universal right fibration is given by (Spc∗/)

op → Spcop, which is
a representable right fibration due to (Spc∗/)

op � (Spcop)/∗. Thus, using Lemma 4.4.7, we
find that

FunL(L,X) � Funp(L, (Spc∗/)
op) � MapSpcop(p, ∗) � (Spcop)p/ ×Spcop {∗},

and likewise that

Funf (K,X) � (Spcop)pf/ ×Spcop {∗}.

The map which we have to investigate is the map induced by the map (Spcop)p/ →
(Spcop)pf/ of left fibrations over Spcop by taking the fibre over ∗ ∈ Spcop. By assumption,
this map is a Joyal equivalence, and thus the induced map on fibres is also a Joyal
equivalence. ��

Corollary 4.4.9
Any Joyal equivalence f : K → L is cofinal.

Proof By Theorem 4.4.8, it suffices to show that for each ∞-category C and each diagram,
the induced map Cp/ → Cpf/ is a Joyal equivalence. For this, it suffices to show that for each
further ∞-category D, the induced map

Fun(D,Cp/) → Fun(D,Cpf/)
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is an equivalence. By adjunction, this map is isomorphic to

Funp(D � L,C) → Funpf (D � K,C),

which is in turn given by the induced map on pullbacks in the diagram

where the right horizontal maps are isofibrations and all vertical maps are Joyal equivalences.
(For the right-hand side, this follows from the fact that D � K → D � L is again a Joyal
equivalence by Corollary 2.5.17.) Therefore, the induced map on pullbacks is also a Joyal
equivalence by Lemma 2.5.7. ��

Corollary 4.4.10
Let f : K → L be a cofinal map and let p : L → C be a diagram with C an ∞-
category. Then f admits a colimit if and only if pf admits a colimit, and in either case,
f preserves this colimit.

Lemma 4.4.11
Let f : K → L be a map of simplicial sets. Then f is a trivial fibration if and only if it
is a cofinal right fibration.

Proof The “only if” part follows from the fact that trivial fibrations are right fibrations and
Joyal equivalences. In order to see the converse direction, we will show that the fibres are
contractible and then allude to the dual version of Exercise 111. So let K → L be a cofinal
right fibration. Then the map

FunL(L,K) → Funf (K,K)

is an equivalence. The right-hand side contains the functor idK : K → K , so there exists an
object ϕ : �0 → FunL(L,X) whose image in Funf (K,K) is equivalent to idK . Spelling
this out, we obtain that f ϕ = idL and that there exists a 1-simplex �1 → Funf (K,K)

connecting idK to ϕf . This corresponds to a commutative diagram

1 × K K

K L

h

pr f

f
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One can then restrict the map h to �1 × Kx for any 0-simplex x of L. The resulting map is
easily seen to provide a homotopy between idKx and ϕf restricted to Kx . The latter map is
constant, since f is constant on the fibres. Thus each fibre Kx is a contractible Kan complex.

��

Proposition 4.4.12
A map is cofinal if and only if it is a composite of a right-anodyne map followed by a
trivial fibration.

Proof The “if” case is clear: Both right-anodyne maps and trivial fibrations are cofinal, and
compositions of cofinal maps are cofinal. Conversely, given a cofinal map f : K → L, we
may factor it as a right-anodyne map K → K ′ followed by a right fibration K ′ → L.
Since right-anodyne maps are cofinal, we find that the right fibration K ′ → L is cofinal by
Proposition 4.4.4, part (1). Then the claim follows from Lemma 4.4.11. ��

Definition 4.4.13
Let p : Y → X be a map of simplicial sets. We call p smooth, if for every pullback
diagram

B Y

A X

j

p

i

with i being cofinal, the map j is again cofinal. Dually, it is called proper if for every such
pullback diagram with i being coinitial, the map j is again coinitial.

Definition 4.4.14
Amap of simplicial sets p : Y → X is called universally smooth if the pullback along any
map X′ → X is smooth. Likewise, it is called universally proper if the pullback along
any map is proper.

Remark 4.4.15
A few words of warning are necessary concerning different notations in the literature.
In [Lur09], what we call universally smooth is simply called smooth, and likewise
for the terms proper and universally proper. The reason for our distinction is that
universally proper maps are closed under pullback, whereas proper (in our terminology)
maps are not closed under pullback, see Exercise 150. In [Cis19, Ngu18], what we

(continued)
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4.4.15 (continued)
call universally smooth is called proper, and what we call universally proper is called
smooth. In fact, the terminology breaks a little earlier: What we call cofinal is called
final, what we call coinitial is called cofinal, and what we call smooth or proper does
not have a separate name in [Cis19,Ngu18].

For the following proposition, we follow the proof given in [Ngu18, 2.3.23] and
[Cis19].

Proposition 4.4.16
Consider a pullback diagram

B Y

A X

j

p

i

where p is a left fibration and i is right-anodyne. Then the map j is again right-
anodyne.

Proof The first step is to see that it suffices to prove the claim for i contained in a generating
set of right-anodyne maps. For this purpose, we claim that the set S of right-anodyne maps
satisfying the conclusion of the lemma is saturated, see Exercise 148. While this is easy to
see for compositions and retracts, one needs to work a little harder to see that these maps
are closed under pushouts. By Corollary 1.3.36, it is then enough to show that the maps
{1}×�n∪�1×∂�n → �1×�n are contained in this setright-anodyne. Also observe that the
set S has the right-cancellation property, since according to Exercise 148 all right-anodyne
maps have this propertyright-anodyne. Thus it suffices to show that for any simplicial set K ,
the map

{1} × K → �1 × K

is contained in S. For this, consider the diagram

{1} × n 1 × n

{1} × n {1} × n ∪ 1 × n

1 n
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Using the claim, we find that the top horizontal map is contained in S. Therefore, since S is
closed under pushouts, the same applies to the lower horizontal map. Also, the lower bended
map is contained in S. Since S satisfies the right-cancellation property, the diagonal map is
also contained in S.

Now we observe that the maps {1} × K → �1 × K are particular instances of right-
anodyne extensions, namely they are right deformation retracts, which are shown to be closed
under pullbacks along left fibrations in Exercise 149. ��

Remark 4.4.17
By applying the opposite functor, we find that if p is a right fibration and i is left-
anodyne, then j is again left-anodyne.

Remark 4.4.18
The conclusion of Proposition 4.4.16 holds more generally for cocartesian fibrations
p : Y → X, see [Lur09, Proposition 4.1.2.15].

Corollary 4.4.19
Left fibrations are universally smooth. In fact, cocartesian fibrations are universally
smooth. Right fibrations, in fact cartesian fibrations, are universally proper.

Proof Since left and right fibrations are closed under pullbacks, it suffices to show that a left
fibration is smooth. For this purpose, consider a diagram as in the definition of smooth maps,
factor the map i as

A
i′→ A′ p→ X,

with i′ right-anodyne and p a trivial fibration, and consider the enlarged diagram

B B Y

A A X

j q

We find that q is a trivial fibration and that j ′ is right-anodyne by Proposition 4.4.16. Thus j

is cofinal as a composition of cofinal maps. ��

Using the fact that left fibrations are smooth and right fibrations are proper, we
obtain a nice proof of an ∞-categorical version of Quillen’s Theorem A. Note that
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this theorem provides yet another characterization of cofinality for maps whose
target is an ∞-category.

Theorem 4.4.20
Let f : C → D be a map of simplicial sets withD an ∞-category. Then f is cofinal if
and only if for all objects d of D, the simplicial set Cd/ is weakly contractible.

Proof First, assume that f is cofinal. In the pullback diagram

the right vertical map is a left fibration, and thus smooth. It follows that Cd/ → Dd/ is cofinal
and thus a weak equivalence. Since Dd/ is weakly contractible (it has an initial object), the
same applies to Cd/.

For the converse direction, we consider a factorization of f as

C
i→ E

p→ D

where i is right-anodyne and p is a right fibration. Wewant to show that p is a trivial fibration,
so that f is cofinal by Proposition 4.4.12. For this purpose, consider the diagram

where all squares are pullbacks. Since the very right vertical map is a left fibration, the middle
vertical map is also a left fibration. By Proposition 4.4.16, the map Cd/ → Ed/ is again right-
anodyne and hence a weak equivalence, and hence Ed/ is weakly contractible.

Now consider the diagram

Again, all squares are pullbacks. This time, the rightmost vertical map is a right fibration,
hence the middle vertical map is also right fibration. Furthermore, the map �0 → Dd/ is
left-anodyne by Lemma 4.1.4, since idd is an initial object ofDd/ (see Exercise 135). Hence,
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by the dual version of Proposition 4.4.16, the map Ed → Ed/ is left-anodyne and thus a weak
equivalence. Since Ed/ is weakly contractible by the first step and Ed is an ∞-groupoid, this
means that the fibres Ed of the right fibration p : E → D are contractible. Hence p is a trivial
fibration, e.g., by Exercise 111. ��

Remark 4.4.21
Dually, a map of simplicial sets F : C → D, with D an ∞-category, is coinitial if and
only if for all objects d of D, the simplicial set C/d is weakly contractible.

To conclude this chapter, here is the actual statement which Quillen proved.

Corollary 4.4.22
Let F : C → D be a functor between ordinary categories. If all slices Cd/ are weakly
contractible, then the functor N(C) → N(D) is a weak equivalence.

Proof By Theorem 4.4.20, the functor N(F) : N(C) → N(D) is cofinal, and hence a weak
equivalence by Proposition 4.4.4. ��



5Adjunctions and Adjoint Functor Theorems

5.1 Adjunctions

In this section, we will discuss adjunctions between ∞-categories. We will define
them in the language of fibrations and show that they may equivalently be described
by choosing a binatural transformation of bivariantmapping-space functors.We will
give several sufficient criteria for a fixed functor f : C → D to admit an adjoint,
similarly as in ordinary category theory, and discuss some examples. Furthermore,
we will prove that (co)limits (if they exist) can be functorially formed by showing
that their formation assembles into an adjoint of the diagonal or constant functor.
Finally, we will discuss the notion of Bousfield localizations, which are those
Dwyer–Kan localizations which admit a right adjoint, or equivalently those functors
which admit a fully faithful right adjoint.

Definition 5.1.1
An adjunction is a bicartesian fibration E → �1, i.e., a functor which is both a cartesian
and a cocartesian fibration.

Definition 5.1.2
Given an adjunction, we can use the straightening-unstraightening equivalence to obtain
a functor f : E0 → E1, classified by the cocartesian fibration, and also to obtain a functor
g : E1 → E0, classified by the underlying cartesian fibration of the adjunction. We refer
to f as the left adjoint and to g as the right adjoint of the adjunction.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Land, Introduction to Infinity-Categories, Compact Textbooks inMathematics,
https://doi.org/10.1007/978-3-030-61524-6_5
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Remark 5.1.3
We say that a functor f : C → D admits a right adjoint, if there exists an adjunction
E → �1 whose associated functor is equivalent to f , i.e., where one specifies
equivalences C � E0 and D � E1, such that the composite C � E0 → E1 � D is
equivalent to f . In general, an adjunction between two ∞-categories C and D hence
consists of a bicartesian fibration E → �1 together with specified equivalences C � E0

and D � E1.

Remark 5.1.4
We can show directly that an adjunction E → �1 gives rise to an equivalence of spaces

mapE1
(f (x), z) � mapE0

(x, g(z))

if x is an object of E0 and z is an object of E1. For this, we consider the spaces
mapE(x, z). Choosing a cartesian lift of the unique map 0 → 1 with target z, we
find by Corollary 3.1.19 that there is a fibre sequence

mapE0
(x, g(z)) → mapE(x, z) → map�1 (0, 1) � ∗,

so that the first map is a homotopy equivalence. Likewise, choosing a cocartesian lift
with domain x gives us a fibre sequence

mapE1
(f (x), z) → mapE(x, z) → map�1 (0, 1) � ∗.

Therefore, we find the desired equivalence as the zig-zag

mapE1
(f (x), z)

�→ mapE(x, z)
�← mapE0

(x, g(z)).

Now we want to promote this result to a natural equivalence of functors Eop
0 ×

E1 → Spc.

Proposition 5.1.5
Let E → �1 be an adjunction, with f : E0 → E1 and g : E1 → E0 the associated
functors. Then there is a natural equivalence of functors

mapE0
(−, g(−)) � mapE1

(f (−),−).
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ProofWe claim that both functors are equivalent to the composite

E
op
0 × E1 → Eop × E → Spc,

where the latter is the bivariant mapping-space functor for the ∞-category E. For this, we first
notice that there is a natural transformation of functors τg : i0 ◦ g → i1 and τf : i0 → i1 ◦ f

which picks out the required (co)cartesian maps: One considers the diagrams

where the dashed arrows exist because EEi → �Ei is again bicartesian, so that we find such
lifts as desired. We then consider the composite

E
op
0 × E1 × �1 → E

op
0 × E → Eop × E → Spc,

which is a natural transformation from mapE(−, g(−)) to mapE(−,−). It is a pointwise
equivalence, since τg is a pointwise cartesian edge. Using that E0 → E is fully faithful
(�1 has trivial spaces of self-maps) and that natural transformations which are pointwise
equivalences are themselves equivalences (see Corollary 2.2.2), we conclude that τg induces
a natural equivalence

mapE0
(−, g(−)) � mapE(−,−) : Eop

0 × E1 → Spc.

Likewise, τf induces a natural equivalence

mapE1
(f (−),−) � mapE(−,−) : Eop

0 × E1 → Spc,

which shows the claim. ��

Next, we wish to define a unit transformation and a counit transformation which
are associated to an adjunction. As in the proof of Proposition 5.1.5, we consider
the transformations τf and τg, and we observe that the two maps

1 × 1

0 × 1

τg

g×id τf

are identical when restricted to E1 × {0}: By definition, τg restricts to the functor
i0 ◦ g, whereas τf ◦ (g × id) restricts to the composite of g with the inclusion i0.
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Hence, these two maps combine to a map E1 × �2
0 → E such that the restriction

to E1 × �{0,1} is given by τf ◦ (g × id), and the restriction to E1 × �{0,2} is given
by τg. This gives the top horizontal map in the diagram

1 × 2
0

1 × 2 1

and the lower horizontal map is given by the composite E1 × �2 → �2 → �1,
where the latter map sends 0 to 0 and both 1 and 2 to 1. In order to see that the
diagram commutes, it suffices to recall that both p◦τf and p◦τg are the projections.
We now find that this lifting problem can be solved, since the composite

E1 × �{0,1} → E1 × �2
0 → E

is pointwise cocartesian. For an object z of E1, the resulting 2-simplex of E is given
by

f (g(z))

g(z) zcart

cocart

Finally, we see that the restriction E1 × �{1,2} → E1 × �2 → E factors through the
inclusion E1 → E by construction.

A similar constructions provides a functor E0 ×�2 → E0 which can be depicted
as follows:

g(f (x))

x f (x)

cart

cocart

Definition 5.1.6
We refer to the resulting functor ε : E1×�1 → E1 as the counit of the adjunction. Dually,
we refer to the resulting functor η : E0 × �1 → E0 as the unit of the adjunction.
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Remark 5.1.7
In an adjunction E → �1, the unique morphism 0 → 1 has both a cartesian and a
cocartesian lift. In general, however, a cartesian lift does not need to be cocartesian and
vice versa. In fact, this can be controlled very nicely.

Proposition 5.1.8
Let p : E → �1 be an adjunction, with a left adjoint f : E0 → E1 and a right adjoint
g : E1 → E0. Then p-cartesian edges are p-cocartesian if and only if g is fully faithful.
Conversely, p-cocartesian edges are p-cartesian if and only if f is fully faithful.
In particular, f and g are mutually inverse equivalences if and only if the set of p-
cartesian edges equals the set of p-cocartesian edges.

Proof We first show that cartesian edges are cocartesian if and only if the counit is an
equivalence. For this, consider the 2-simplex from above,

f (g(z))

g(z) z
cart

cocart

and assume that cartesian edges are cocartesian. By the dual version of Lemma 3.1.7, we
find that the counit map f (g(z)) → z is also cocartesian and thus an equivalence for every z,
because its image is invertible in �1. Hence the counit is a natural equivalence. Conversely,
if the counit is an equivalence, then it is also cocartesian, so that the cartesian edge g(z) → z

is cocartesian as well (as a composition of cocartesian edges).
Next, we will show that g is fully faithful if and only if the counit is an equivalence. By

construction, the diagram

map
1
(z,w) map

0
(g(z), g(w))

map
1
(f (g(z)),w) map (g(z),w)

commutes. The lower horizontal map and the right vertical map are equivalences, because
they are induced by post-composition with a cartesian edge, or by precomposition with
a cocartesian edge, respectively. Hence, g is fully faithful if and only if the counit is an
equivalence.

The argument for the unit is similar, and the “in particular” part follows from the fact that
f and g are mutually inverse if and only if they are both fully faithful. ��
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Definition 5.1.9
Let f : C → D be a functor between ∞-categories. Then f is said to admit a right adjoint
if the cocartesian fibration E → �1 associated to f is cartesian. Conversely, g : D → C is
said to admit a left adjoint if the cartesian fibration E′ → �1 associated to g is cocartesian.

The following proposition provides a useful way of constructing functors.

Proposition 5.1.10
Let f : C → D be a functor between ∞-categories. Specify for each object x of D an
object gx of C and maps f (gx) → x inD. If the induced composite

mapC(z, gx)
f→ mapD(f (z), f (gx))

ε→ mapD(f (z), x)

is an equivalence, then there exists a functor g : D → C, sending x to gx, which is
right-adjoint to f . Furthermore, the counit of the adjunction is then equivalent to the
chosen map f (gx) → x.

Proof Let p : E → �1 be the cocartesian fibration associated to the functor f . We want to
show that p is cartesian. In other words, we must specify, for each object x of E1 � D, a
p-cartesian morphism over the unique non-identity morphism of �1. For this purpose, we
consider the object gx of E0 � C and choose a p-cocartesian morphism gx → f (gx).
Composing this morphism with the specified morphism f (gx) → x, we obtain a map gx →
x over the unique non-identity morphism of �1. If we can show that this map is p-cartesian,
then the first part of the proposition follows. For this, note that a morphism α : u → v in E

over 0 → 1 is p-cartesian if and only if the map

mapE(w, u)
α∗→ mapE(w, v)

is a homotopy equivalence for all w ∈ E0 (for instance using Remark 3.1.18). In other words,
we must show that the composite

mapE(z, gx) → mapE(z, f (gx)) → mapE(z, x)

is an equivalence for all z ∈ E0. For this, we choose a p-cocartesian edge z → f (z) and
consider the diagram

map (z, gx) map (z, f (gx)) map (z, x)

map (z, gx) map (f (z), f (gx)) map (f (z), x)
f
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where the middle vertical map and the right vertical map are equivalences, since z → f (z) is
p-cocartesian and x and f (gx) are objects of E1. The lower composite is an equivalence
by assumption, hence the upper composite is also an equivalence. Therefore, the above
constructed map gx → x is p-cartesian.

It remains to prove the claim about the counit of the adjunction. But this follows from the
construction: Note that there is a 2-simplex in E

f (gx)

gx x

ε

cart

cocart

and we have just verified that any composite is a cartesian edge gx → x. ��

Remark 5.1.11
Likewise, specifying gx for each object x of D and maps x → f (gx) such that the
composite

mapC(gx, z) → mapD(f (gx), f (z)) → mapD(x, f (z))

is an equivalence for all z ∈ C leads to a functor g which is left-adjoint to f , and the
specified map is equivalent to the unit of the adjunction.

Proposition 5.1.12
The association C �→ C[W−1], where W consists of all morphisms of C, extends to a
left adjoint of the inclusion Spc → Cat∞.

Proof By Proposition 5.1.10 and its variant for the existence of left adjoints, it suffices
to specify the ∞-groupoid C[W−1] for each ∞-category C, together with the map C →
C[W−1], and to show that for each ∞-groupoid X, the composite

mapSpc(C[W−1],X) → mapCat∞(C[W−1],X) → mapCat∞ (C,X)

is an equivalence. As we have already seen, the functor Spc → Cat∞ is fully faithful, so the
first map is an equivalence. Next, we recall that for arbitrary ∞-categories C andD, we have

mapCat∞(C,D) � Fun(C,D)�.
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However, ifD is an ∞-groupoid, then Fun(C,D) is also an ∞-groupoid, therefore it suffices
to show that the map

Fun(C[W−1],X) � Fun(C,X)

is an equivalence for all ∞-groupoids. The universal property of the localization shows
that the former is canonically equivalent to Fun�(C,X), the full subcategory of Fun(C,X)

on functors sending all morphisms to equivalences. Since every morphism in X is an
equivalence, the inclusion Fun�(C,X) → Fun(C,X) is an equivalence. With this, the
proposition is shown. ��

The next proposition makes sure that if we already have a candidate for a right-
adjoint functor, then it is really a right adjoint.

Proposition 5.1.13
Let f : C → D and g : D → C be functors, and let ε : fg → id be a natural
transformation such that the induced map

map(x, g(y)) → map(f (x), f (g(y))) → map(f (x), y)

is an equivalence for all x and y. Then g is right-adjoint to f .

Proof By Proposition 5.1.10, there exists a functor g′ which is right-adjoint to f , pointwise
equivalent to g and such that the counit map is equivalent to the chosen map. We now
need to show that g′ is equivalent to g. For this, we first construct a natural transformation
g → g′ as follows: We recall that the functor Fun(D,C) → Fun(D,P(C)), given by
post-composition with the Yoneda functor, is fully faithful; it hence suffices to construct
an equivalence between the images of g and g′, these images being given by the two functors

d �→
⎧
⎨

⎩

mapD(f (−), d) for g′,
mapC(−, g(d)) for g.

By Exercise 147, we find that these two functors are equivalent. Hence, we can deduce that
g and g′ are also equivalent. ��

Corollary 5.1.14
Let f : C → D and g : D → C be functors. Then g is right-adjoint to f if and only
if there exist unit transformations and counit transformations that satisfy the triangle
identities.
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ProofThe fact that the triangle identities are satisfied for an adjunction is left as an exercise to
the reader. The converse follows from the previous proposition, since satisfying the triangle
identities implies that the canonical map

map(x, g(y)) → map(f (x), f (g(y))) → map(f (x), y)

is an equivalence, and an inverse is given by the composite

map(f x, y) → map(gf x, gy) → map(x, gy).

��

Based on this result, we can prove the following result about the compatibility of
adjunctions with Dwyer–Kan localizations and functor categories.

Proposition 5.1.15
Let f : C → D and g : D → C. Suppose that C is equipped with a set S of morphisms
and that D is equipped with a set T of morphisms. If f (S) ⊆ T and g(T ) ⊆ S,
then there are induced functors F : C[S−1] → D[T −1] and G : D[T −1] → C[S−1]. If
furthermore f is left-adjoint to g, then F is left-adjoint to G.

Proof By Corollary 5.1.14, it suffices to construct transformations FG → id and id → GF

which satisfy the triangle identities. We first construct the map id → GF , which is a 1-
simplex of Fun(C[S−1],C[S−1]) from id to the composition GF . We know that the restriction
functor

�∗ : Fun(C[S−1],C[S−1]) → Fun(C,C[S−1])

is fully faithful, so it suffices to construct the desired 1-simplex in the latter category, namely
from � to GF ◦ �. There is also a functor

Fun(C,C) → Fun(C,C[S−1])

given by post-composition with the localization map � : C → C[S−1]. The unit of the
adjunction η is a 1-simplex from id to gf in the former category, hence this functor gives
rise to a 1-simplex in Fun(C,C[S−1]) from � to � ◦ gf . By definition of G and F , there is an
equivalence � ◦ gf � GF ◦ �. Hence we find a transformation from � to GF ◦ � as needed.
Likewise, one obtains the counit transformation FG → id. In order to see that the triangle
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identities are fulfilled, we consider the 2-simplex witnessing the triangle identity for f in the
diagram

�2 → mapFun(C,D)(f, f )

→ mapFun(C,D[T −1])(�D ◦ f, �D ◦ f )

�← mapFun(C[S−1],D[T −1])(F, F)

Note that the resulting 2-simplex of map(F, F) witnesses the triangle identity for F . The
argument for G is similar. ��

Proposition 5.1.16
Let f : C → D be a functor, K a simplicial set and E an auxiliary ∞-
category. If f admits a right adjoint or a left adjoint, respectively, then so does
f∗ : Fun(K,C) → Fun(K,D). If f admits a right adjoint or a left adjoint, respectively,
then f ∗ : Fun(D,E) → Fun(C,E) admits a left adjoint or a right adjoint, respectively.

Proof Let g be a right adjoint of f . We prove that g∗ is right-adjoint to f∗ and that g∗ is
left-adjoint to f ∗. The other cases are similar. For this, let ε : fg → id be the counit and
η : id → gf be the unit of the adjunction, viewed as morphisms

Then we can post-compose with the canonical functor Fun(C,D) → Fun(CK,DK) and
obtain new transformations ε∗ : f∗g∗ → id∗ and η∗ : id∗ → g∗f∗. It is easy to check
that these transformations satisfy the triangle identities, and therefore form an adjunction.
Likewise, one can compose with the functor Fun(C,D) → Fun(ED,EC) and obtain
transformations ε∗ : (fg)∗ = g∗f ∗ → id∗ and η∗ : id∗ → (gf )∗ = f ∗g∗. Again, these
transformations satisfy the triangle identities, thus g∗ is left-adjoint to f ∗. ��

Corollary 5.1.17
The functor Cat∞ → Spc given by taking the maximal sub-∞-groupoid is a right
adjoint of the inclusion Spc → Cat∞.

ProofThe inclusion functor Kan → Cat1∞ has a right adjoint given by Cat1∞ → Kan, sending
C to C�. The inclusion sends homotopy equivalences to Joyal equivalences, and the maximal
sub-groupoid functor sends Joyal equivalences to homotopy equivalences. Hence we may
apply Proposition 5.1.15. ��
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Remark 5.1.18
Of course, one can also prove Corollary 5.1.17 by using Proposition 5.1.13. In this case,
one has to show that for an ∞-groupoid X and an ∞-category C, the canonical map

Fun(X,C�) → Fun(X,C)�

is a homotopy equivalence.

Proposition 5.1.19
Let � : C → D be a Dwyer–Kan localization. Suppose that � admits a right adjoint r .
Then r is fully faithful.

ProofWe claim that the there is a commutative diagram in the ∞-category Cat∞

for which we have to check if there is a natural equivalence between the functors

d �→
⎧
⎨

⎩

c �→ mapC(c, r(d)),

c �→ mapD(�(c), d).

But this is a consequence of the fact that r is right-adjoint to �, see Proposition 5.1.5. Since
� is a localization, the functor �∗ is fully faithful. The proposition thus follows from the fact
that the Yoneda functors are fully faithful. ��

Definition 5.1.20
A Dwyer–Kan localization which admits a right adjoint is called a Bousfield localization.

Definition 5.1.21
An ∞-category is called essentially small if it is equivalent to a small ∞-category. An
∞-category is called locally small if for any two objects x and y of C, the mapping space
mapC(x, y) is essentially small.
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Corollary 5.1.22
Let C be a locally small ∞-category, and let C → D be a Bousfield localization. Then
D is locally small.

Proof By Proposition 5.1.19, D can be identified with a full subcategory of C, therefore it is
also locally small. ��

Proposition 5.1.23
Let f : C → D be any functor which has a fully faithful right adjoint r . Then f is a
Bousfield localization.

Proof By Proposition 5.1.19, it suffices to show that f is a Dwyer–Kan localization. Let E
be an auxiliary ∞-category. We need to show that the functor f ∗ : Fun(D,E) → Fun(C,E)

is fully faithful, and characterize the essential image. In order to see that f ∗ is fully faithful,
we observe that r∗ is a left adjoint to f ∗ by Proposition 5.1.16. Furthermore, f r → id is an
equivalence by assumption. From the construction, we find that r∗f ∗ → id is an equivalence
as well, so that f ∗ is fully faithful. It remains to show that f is a Dwyer–Kan localization.
If this is the case, then it must be a Dwyer–Kan localization along the set of f -equivalences,
i.e., those morphisms which become equivalences after applying f . We thus need to consider
a functor a : C → E with the property that it sends f -equivalences to equivalences and show
that this is equivalent to a composite C → D → E for some functor b : D → E. We
claim that b = ar works. In order to confirm this claim, we have to show that there is an
equivalence between a and bf = arf . The unit of the adjunction is a map id → rf , which
we claim to consist of f -equivalences: Applying f to the map x → rf (x) yields a map
f x → f rf (x), which we may post-compose with the counit to obtain the composite f x →
f rf (x) → f (x). Now according to the triangle identity, the composite is an equivalence,
and the fact that the right adjoint r is fully faithful implies that the counit is an equivalence,
see Proposition 5.1.8. Hence, the unit is an f -equivalence. Then the fact that a sends f -
equivalences to equivalences implies that the canonical map a → arf is an equivalence as
needed. ��

Example The functor Cat∞ → Spc given by inverting all morphisms has a fully
faithful right adjoint, given by the inclusion Spc → Cat∞. Hence, it is a Bousfield
localization.
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Proposition 5.1.24
Let C be an ∞-category and K a simplicial set. If C admits K-indexed colimits, then
their formation assembles into a functor colimK : Fun(K,C) → C which is left-adjoint
to the constant functor. Conversely, if the constant functor const : C → Fun(K,C)

admits a left adjoint F , then F(p) is a colimit of p for any diagram p : K → C.

Proof For the proof of the existence of a left adjoint, we employ Remark 5.1.11. Thus, we
first have to specify, for each object p of Fun(K,C), an object t of C and a map p → const(t).
As object, we choose a colimit colimK p. Therefore, we need to construct a morphism p →
const(colimK p) in Fun(K,C), where const(colimK p) is the functor which is constant with
value colimK p. By adjunction, such a morphism is a map K ×�1 → C. Choosing a colimit
cone p̄ : K � �0 → C, we can restrict it along the canonical map K × �1 → K � �0.
By construction, the restriction to K × {0} yields p, and the restriction to K × {1} yields
the constant functor with value p̄(∞) as needed. Then we have to show that the composite
map

mapC(colim
K

p, x) → mapFun(K,C)(const(colim
K

p), const(x)) → mapFun(K,C)(p, const(x))

is an equivalence. Under the equivalences of Proposition 4.3.14, this map corresponds to the
canonical map

mapC(colim
K

p, x)
�←− Map(p̄, x) −→ Map(p, x)

which is an equivalence by the assumption that p̄ is a colimit cone.
Conversely, assume that the constant functor admits a left adjoint F : Fun(K,C) → C

and consider a functor p : K → C. We wish to show that F(p) is a colimit of p. For this,
note first that the unit of the adjunction gives a map p → constF(p) in Fun(K,C). This map
is adjoint to a map K × �1 → C, and as before, one readily checks that this map factors
through the projection K ×�1 → K ��0. The resulting map p̄ : K ��0 → C is a cone over
p, and it remains to show that it is an initial cone. This is the case if and only if the canonical
map

MapC(p̄, x) → MapC(p, x) � mapCK (p, constx) � mapC(F(p), x)

is an equivalence. But here again, the composite is equivalent to the canonical map given by
restriction along the inclusion {∞} → K � �0, which is an equivalence. ��
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Remark 5.1.25
Dually, the same statement holds for limits: If possible, the formation of limits is a
functor which is right-adjoint to the constant functor.

Definition 5.1.26
Let K be a set of simplicial sets. We say that an ∞-category is K-(co)complete, if it
admits all K-indexed (co)limits, i.e., (co)limits indexed over simplicial sets K which are
contained inK.

Proposition 5.1.27
Let C be a K-cocomplete, respectively a K-complete, ∞-category and L a simplicial
set. Then Fun(L,C) is again K-cocomplete, respectively K-complete.

Proof Let K be an element of K. We claim that the composite

Fun(K,Fun(L,C)) � Fun(L,Fun(K,C)) → Fun(L,C),

where the latter functor is a post-composition with the colimit functor colimK : Fun(K,C) →
C, is left-adjoint to the constant functor. This follows immediately from the fact that
(colimK)∗ is right-adjoint to const∗ by Proposition 5.1.16. ��

Corollary 5.1.28
Let C be K-(co)complete and let L be a simplicial set. Then the constant functor C →
Fun(L,C) preserves K-indexed (co)limits.

Proof We wish to show that if K is in K and p : K → C is a diagram with colimit x, then
the constant functor with value x is a colimit of the diagram K → C → Fun(L,C). For this,
we first observe that for any functor ϕ : D → E and any simplicial set S, the diagram
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commutes. Applying this observation to the functor colimK : Fun(K,C) → C and the
simplicial set L, we obtain the commutative diagram

where the left vertical composite is given by post-composition with the constant functor
C → Fun(L,C). Notice that the upper triangle commutes by the proof of Proposition 5.1.27.
The commutativity of the diagram then implies the statement of the corollary. ��

Proposition 5.1.29
Let f : C → D be a left adjoint. Then f preserves colimits. Likewise, right adjoints
preserve limits.

ProofWe only prove that left adjoints preserve colimits; the other case follows by passing to
opposite categories. So let F : K → C be a diagram and F̄ a colimit cone. We wish to show
that f F̄ is a colimit cone of f F , which amounts to showing, for an object z of D, that the
canonical map

MapD(f F̄ , z) → MapD(f F, z)

is an equivalence. For this, we claim that for any functor G : L → C, there is a canonical
equivalence

MapD(f G, z) � MapC(G, gz),

where g is the right adjoint of f . Taking this claim for granted for the moment, we then
consider the commutative diagram

where the vertical maps are equivalences by the claim, and where the lower horizontal map
is an equivalence by the assumption that F̄ is a colimit cone. Therefore, the upper map is
also an equivalence as needed.
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It remains to prove the claim. For this, we consider the following chain of equivalences:

MapD(f G, z) � mapDK (f∗(G), constz) by Proposition 4.3.14

� mapCK (G, g∗(constz)) by Proposition 5.1.16

� mapCK (G, constgz) as g∗(constz) = constgz

� MapC(G, gz) by Proposition 4.3.14

��

Finally, we need the following proposition in order to establish the adjoint functor
theorems in the following section.

Proposition 5.1.30
Consider a pullback diagram of ∞-categories

where the map p is an isofibration. Suppose that p preserves colimits, and let F : K →
C be a diagram. Then:

(1) A cone F̄ : K � �0 → C is a colimit cone if its image under f and q is a colimit
cone.

(2) If C′ and D are cocomplete and g preserves colimits, then C is also cocomplete.
Furthermore, f and q preserve colimits.

Proof The first thing to observe is that for any object x of C, there is a homotopy-cartesian
diagram

This follows from Proposition 4.3.14 and the fact that the mapping spaces in a pullback are
given by the pullback of the mapping spaces. (Note that we make use of the fact that applying
the functor Fun(K,−) to the above diagram gives a pullback diagram again, where one leg
is an isofibration.)

Next, we wish to analyze whether F̄ is a colimit cone. For this, we consider the above
squares for F̄ and F , and obtain a canonical commutative cube. The assumption that f F̄ and
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qF̄ are colimit cones implies that the comparison maps are equivalences on the left lower
corner and on the right upper corner. Using the fact that p preserves colimits, we find that
pf F̄ is also a colimit cone, so that the comparison map is also an equivalence. Therefore,
the comparison map is an equivalence on the upper left corner as well, so that F̄ is a colimit
cone. This proves (1).

In order to prove (2), it suffices to show that any diagram F : K → C admits a cone F̄

whose image in D and C′ is a colimit cone: Once this is shown, we can apply (1) to see that
F̄ is a colimit cone, and by construction q and f send F̄ to a colimit cone again.

For the proof the above statement, we consider the composite F1 : K → C → C′ and
choose a colimit cone F̄1 : K � �0 → C′. Likewise, we consider the composite F2 : K →
C → D and choose a colimit cone F̄2 : K � �0 → D. Then the images gF̄2 and pF̄1 are
also colimit cones by the assumption that both p and g preserve colimits. Hence, there is an
equivalence τ between these two cones. Let us say that τ is an equivalence from pF̄1 to gF̄2.
Then we obtain a lifting problem

which admits a solution, since the right vertical map is an isofibration (since p is an
isofibration). Furthermore, the dashed arrow is again an equivalence in C′, and hence τ̂ (1) is
another cocone of f F . Unravelling the definitions, we obtain a commutative diagram

This gives a unique map K � �0 → C which is a cone over F as claimed. ��

5.2 Adjoint Functor Theorems

The goal of this section is to prove two adjoint functor theorems, following
the arguments given in [NRS19]. These theorems then imply the adjoint functor
theorems of Lurie [Lur09] in the context of presentable ∞-categories.

Definition 5.2.1
A full subcategory C0 ⊆ C of an ∞-category C is called colimit-dense, if every object of
C can be written as a colimit of a diagram p : K → C0 ⊆ C.
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Theorem 5.2.2
Let C be a locally small ∞-category which is cocomplete and contains an essentially
small, colimit-dense and full subcategory C0 ⊆ C. LetD be a locally small ∞-category
and let F : C → D be a functor. Then F admits a right adjoint if and only if F preserves
colimits.

Remark 5.2.3
Examples of locally small ∞-categories which admit a small, colimit-dense and full
subcategory are accessible ∞-categories. An ∞-category is called accessible if it
is κ-accessible for some regular cardinal κ . A κ-accessible ∞-category is a locally
small ∞-category C which admits κ-filtered colimits and contains an essentially small
subcategory C0 such that every object of C0 is κ-compact and every object of C is a
κ-filtered colimit of objects in C0.
Recall that a κ-filtered colimit refers to a colimit over a functor f : I → C, where the
∞-category I is κ-filtered. This in turn means that any diagram J → I admits a cone
J � �0 → I , provided that J is a κ-small simplicial set (i.e., the cardinality of its
non-degenerate simplices is less than κ).

Remark 5.2.4
An accessible ∞-category which is in addition cocomplete is called presentable.
The above Theorem 5.2.2 can hence be applied to functors between presentable
∞-categories, so that any colimit-preserving functor between presentable categories
admits a right adjoint.

Before we dive into the proof of Theorem 5.2.2, let us state an important
consequence thereof.

Corollary 5.2.5
Let C be a locally small ∞-category which is cocomplete and contains an essentially
small, colimit-dense and full subcategory C0 ⊆ C. Then C is complete.

Proof Let K be a small simplicial set. Consider the functor const : C → Fun(K,C), which
preserves colimits, see Corollary 5.1.28. Moreover, Fun(K,C) is again locally small (for a
justification, see, e.g., [Lur09, Example 5.4.1.8]). In fact, one can write the mapping spaces
in the functor category from F to G as the limit of the composite
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and then deduce from the fact that Tw(K) is small and that each value of this functor is
small, that the limit over the functor is a small space as well. Hence, by Theorem 5.2.2, the
constant functor admits a right adjoint, which takes a diagram p : K → C to a limit of p by
Proposition 5.1.24. ��

In order to prove Theorem 5.2.2, we need some preliminaries. We will employ
the following criterion for obtaining the right adjoint.

Proposition 5.2.6
Let F : C → D be a functor. Then F admits a right adjoint if and only if, for all objects
d of D, the ∞-category C/d admits a terminal object.

Proof Let d be an object ofD and consider a terminal object of C/d , given by a pair (Gd, f )

where f is a morphism FGd → d in D. Since we would like to use Proposition 5.1.10 for
showing that F admits a right adjoint, we must consider the lower composite in the diagram

Note that the left square is the pullback of mapping spaces induced from the following
pullback of ∞-categories:

Furthermore, the right square is a homotopy pullback by Proposition 3.3.18. Thus, the
big square is a homotopy pullback as well, and the upper composite is an equivalence
by the assumption that (Gd, f ) is a terminal object of C/d . Hence, the lower composite
is an equivalence on all components of mapC(c,Gd) which lie over the component
of α in mapD(Fc, d). Since this holds for all α : Fc → d, the claim follows from
Proposition 5.1.10. ��

Remark 5.2.7
Likewise, a functor admits a left adjoint if and only if, for all objects d of D, the
category Cd/ admits an initial object.
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Remark 5.2.8
Since ∞-categories with terminal or initial objects are weakly contractible, we can
deduce from Theorem 4.4.20 (and its dual version) that a functor which admits a left
adjoint is cofinal (and a functor which admits a right adjoint is coinitial).

Therefore, we need to find criteria to ensure that specific categories admit
terminal objects. For this, we will make use of the notion of weakly terminal sets.

Definition 5.2.9
Let C be an ∞-category and S a (small) set of objects. S is said to be weakly terminal, if
for every object x of C, there exists an object s in S such that the spaces mapC(x, s) is not
empty. An object t is called weakly terminal if the set {t} is a weakly terminal set.

Lemma 5.2.10
Let C0 ⊆ C be an essentially small, full subcategory of a cocomplete category which is
colimit-dense. Then C has a weakly terminal object.

Proof Consider the functor C0 → C and pick a Joyal equivalence C′ � C0 with C′ a small
simplicial set. Since Joyal equivalences are cofinal by Corollary 4.4.9 and C is cocomplete,
we find that the functor C0 → C admits a colimit t . We claim that t is a weakly terminal
object. In order to see this, let x be another object of C. By assumption, there is a functor
K → C0 such that the colimit over the composite K → C0 → C is given by x. We obtain a
canonical map x → t on colimits. In particular, the space of maps x → t is not empty. ��

Proposition 5.2.11
Let C be a locally small and cocomplete ∞-category, let S be a weakly terminal set,
and let C0 be the full subcategory spanned by S. Then C0 → C is cofinal.

Proof By Theorem 4.4.20, it suffices to show that for any object x of C, the slice (C0)x/ is
weakly contractible. If we can show that for any small simplicial set K , any functor K →
(C0)x/ factors through the inclusion K � �0 which is contractible, it follows that (C0)x/

is weakly contractible as needed. In order to prove the above statement, consider a functor
K → (C0)x/ and the composite

K → (C0)x/ → Cx/.
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Since C is cocomplete, the same applies to Cx/ by Proposition 4.3.35. Therefore, we may
choose a colimit cone of the above functor

and consider μ(∞) : x → t . Pick an object s in S for which there exists a map t → s,
and pick such a map. Choosing a composite of x → t and t → s provides a 2-simplex
σ : �2 → C, which is adjoint to a map �1 → Cx/. Then we consider the lifting problem

which can be solved, since the vertical map is inner-anodyne by Lemma 1.4.22 and Cx/ is
an ∞-category. Restricting μ′ along the inclusion K � �{1} → K � �1 leads to a functor
K � �0 → Cx/ which factors through (C0)x/: Since (C0)x/ ⊆ Cx/ is a full subcategory, it
suffices to see that all objects of K � �0 go to (C0)x/; on K it is true by assumption and on
the cone point {∞}, by construction, one obtains the map x → s which is in (C0)x/, again
by construction. Hence, the proposition is proven. ��

Corollary 5.2.12
Let C be a locally small ∞-category which is cocomplete. Assume that a weakly
terminal set exists. Then C admits a terminal object.

Proof Let S be a weakly terminal set and consider the full subcategory C0 spanned by S. By
Proposition 5.2.11, the inclusion C0 → C is cofinal. Since C0 is small, the functor C0 → C

admits a colimit. From Corollary 4.4.10, we can thus deduce that the identity functor C → C

admits a colimit as well. Such a colimit is a terminal object by Lemma 4.3.15. ��

Remark 5.2.13
By passing to opposites, we find that if C is a locally small and complete category
which admits a weakly initial set, then it admits an initial object.

Proof of Theorem 5.2.2 The fact that left adjoints preserve colimits was dealt with in
Proposition 5.1.29. Let us therefore prove that F admits a right adjoint if it preserves colimits.
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By Proposition 5.2.6, it suffices to show that for every object d of D, the slice C/d has a
terminal object.

For this, we first observe that C/d is again locally small and cocomplete. The cocom-
pleteness follows from Proposition 5.1.30, because the functor C → D preserves colimits by
assumption and the functor D/d → D preserves colimits by Proposition 4.3.34. In order to
see that C/d is again locally small, we calculate the mapping spaces in terms of those in C,
D andD/d : Those in C andD are essentially small by assumption, and those inD/d are also
essentially small by Proposition 3.3.18. Therefore, the pullback is also essentially small.

Hence, by Corollary 5.2.12, it suffices to establish the existence of a weakly terminal
object, which we will deduce by means of Lemma 5.2.10. In other words, we have to show
that C/d contains an essentially small, full subcategory which is colimit-dense. We claim that
(C0)/d is such a subcategory. As shown above, (C0)/d is locally small, hence it suffices to
show that the set of equivalence classes of objects is small. This follows easily from the fact
that the objects of (C0)/d are given by pairs (x, α : F(x) → d) with x ∈ C0. Since C0 is
essentially small, the equivalence classes of such x are a small set. Furthermore, for each
such x, the space of maps mapD(F(x), d) is also essentially small due to the assumption
that D is locally small. Therefore, it remains to show that (C0)/d → C/d is a colimit-dense
subcategory. For this, let (y, α : F(y) → d) be an object of C/d and write y = colimK p for
some diagram p : K → C0 ⊆ C. We now show that this diagram can be lifted to a diagram

p′ : K → (C0)/d . In order to do so, we first note that a colimit cone of the map K → C0
i→ C

gives rise to a map K → C/y . Composing this map with F gives us a map K → D/F (y), and
the map α gives rise to a further map D/F (y) → D/d . We thus find a diagram

which commutes by construction. We thus obtain an induced map p′ : K → (C0)/d whose
composite with (C0)/d → C/d is the diagram p. In order to finish the proof of the theorem,
it now suffices to note that the colimit of p′ can be calculated by Proposition 4.3.34 to be
(y, α). ��

We finish this book with the other adjoint functor theorem that is available for
presentable ∞-categories. For this, recall that an ∞-category is called accessible,
if it is κ-accessible for some cardinal κ , and that a functor is called accessible if it
is κ-accessible for some cardinal κ , i.e., if it preserves κ-filtered colimits for some
sufficiently large cardinal κ .

Theorem 5.2.14
Suppose that C is a locally small, accessible and complete ∞-category and that D is a
locally small and complete ∞-category in which every object is κ-compact for some κ .
Then a functor F : C → D admits a left adjoint if it preserves limits and is accessible.
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Proof We wish to show that for all objects d of D, the slice Cd/ has an initial object. By
the dual version of Corollary 5.2.12, it suffices to show that Cd/ admits a weakly initial set.
(Note that Cd/ is locally small and complete, since C and D are complete by assumption and
both F : C → D and Dd/ → D preserve limits.) We fix a regular cardinal κ such that the
following conditions hold:

(1) C is κ-accessible,
(2) F is κ-accessible, and
(3) d is κ-compact.

For each item, such a κ exists by the assumptions, and by passing to a suitably large cardinal,
we also find one that satisfies all three conditions, see Remark 5.2.17 below.

Next, we consider the set S of objects of Cd/, consisting of all pairs (x, α : d → Fx)

where x is a κ-compact object of C. Since the subcategory Cκ of κ-compact objects of C is
essentially small, S is in fact a small set. We claim that the set S is weakly initial. In order to
see this, we consider an arbitrary object (z, β : d → Fz) of Cd/. Since C is κ-accessible, we
can write z as a κ-filtered colimit of a diagram p : K → Cκ ⊆ C. Since F is κ-accessible,
we find that Fz = colimK Fp. Hence, since d is κ-compact, we find that the map

colim
K

mapD(d, Fp(−)) → mapD(d, Fz)

is an equivalence. Therefore, β must come from some mapD(d, Fp(k)) for k an object of
K . Since the image of p lies in the κ-compact objects, this map is present in the set S. This
shows that S is weakly initial as claimed, and thus proves the theorem. ��

Remark 5.2.15
One can show that under the assumptions of Theorem 5.2.14, a right adjoint is
accessible, see, e.g., [NRS19, Theorem 4.1.4 (1)]. Thus, the statement may be promoted
to an “if and only if” statement, since we argued in Proposition 5.1.29 that right adjoints
preserve limits.

Remark 5.2.16
By Corollary 5.2.5, presentable ∞-categories are complete, so we may apply Theo-
rem 5.2.14 to a presentable ∞-category C. Moreover, an accessible (in particular a
presentable) ∞-categoryD also has the property that any object is κ-compact for some
κ . In conclusion, Theorem 5.2.14 may be applied to an accessible and limit-preserving
functor between presentable ∞-categories. The conclusion is that such a functor admits
a left adjoint.
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Remark 5.2.17
In the proof of Theorem 5.2.14, we freely used some facts about accessible ∞-
categories and compact objects, which are subsequently summed up. For this, let κ ′ > κ

be regular cardinals. Then we have the following properties:

(1) Any κ-compact object is also κ ′-compact: This is merely because any κ ′-filtered
diagram is also κ-filtered.

(2) A κ-accessible functor is also κ ′-accessible: Again, this follows from the fact that
every κ ′-filtered diagram is κ-filtered.

(3) A κ-accessible ∞-category does not need to be κ ′-accessible in general, see
[Lur09, Remark 5.4.2.12]. However, one can always find many κ ′′ > κ such that a
κ-accessible ∞-category is also κ ′′-accessible, see [Lur09, Proposition 5.4.2.11].

Remark 5.2.18
Theorem 5.2.14 also holds without the assumption that D is complete, see [NRS19,
proof of Theorem 4.1.1 (2)].

Corollary 5.2.19
Let C be a locally small, accessible and complete ∞-category. Then C is presentable.

ProofWe need to show that C is cocomplete. For this, consider a small simplicial set K and
the constant functor C → Fun(K,C). As before, Fun(K,C) turns out to be locally small and
every object is κ-compact for some κ , see [Lur09, Proposition 5.3.4.13]. We may thus apply
Theorem 5.2.14 and conclude that the constant functor admits a left adjoint. Therefore, C
admits K-indexed colimits by Proposition 5.1.24. ��
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Exercise 1 Let h(CW) be the homotopy category of CW-complexes. Show that this category
does not have all pushouts. More concretely, show that the diagram

∗ ←− S1 ·2−→ S1

does not admit a pushout.

Exercise 2 Work out at least three of the following simplicial identities:

(1) d∗
i d∗

j = d∗
j−1d

∗
i if i < j

(2) d∗
i s∗

j = s∗
j−1d

∗
i if i < j

(3) d∗
i s∗

j = id if i = j, j + 1
(4) d∗

i s∗
j = s∗

j d∗
i−1 if i > i + 1

(5) s∗
i s∗

j = s∗
j+1s

∗
i if i ≤ j

Here, for any simplicial set X : �op → Set, we denote the map X(di) by d∗
i . Hint: Think

about what this means for the maps di and sj in �, and prove the corresponding identities
there.

Exercise 3 Show that every map in � can be uniquely factored as a composition of si ’s
followed by a composition of dj ’s. Therefore, a simplicial set is equivalently described by
a sequence of sets Xn equipped with face and degeneracy maps satisfying the simplicial
identities.

Exercise 4 Give examples of simplicial sets where the relation of Definition 1.1.9, leading
to π�

0 (X), is not symmetric and not transitive.
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Exercise 5 Show that every simplex x ∈ Xn is of the form α∗(y) for a surjection α : [m] →
[n] and a non-degenerate n-simplex y, and show that the pair (α, y) is uniquely determined
by x.

Exercise 6 Show that the category Set is bicomplete. Hint: General colimits are constructed
as quotients of disjoint unions, and general limits are constructed as subsets of products.

Exercise 7 Let F : I → C be a functor. Show that a colimit of F can equivalently be
described as an initial cocone over F , and that a limit of F can be equivalently described
as a terminal cone over F .

Exercise 8 Calculate the limit and colimit of a simplicial set X : �op → Set.

Exercise 9 Show that the datum of an adjunction in the sense of Definition 1.1.17 is
equivalent to the datum of a pair of functors (F,G) together with natural transformations
ε : FG → id and η : GF → id satisfying the triangle identities, i.e., the obvious composites

F(X) → F(GF(X)) ∼= FG(FX) → F(X)

and

G(X) → GF(G(X)) ∼= G(FG(X)) → G(X)

are the identity of F(X) and G(X), respectively.

Exercise 10 Show that a functor F : C → D admits a right adjoint if you can specify objects
Gy for all y ∈ D and maps εy : FGy → y, which have the property that the induced map on
hom-sets

HomC(x,Gy)
F−→ HomD(Fx, FGy)

εy−→ HomD(Fx, y)

is a bijection. Note that there is an obvious dual notion which shows that F admits a left
adjoint if one can specify objects Gy for all y ∈ D and maps ηy : y → FGy which make the
induced map on hom-sets

HomD(Gy, x)
F−→ HomC(FGy,Fx)

ηy→ HomC(y, Fx)

a bijection.

Exercise 11 Prove that if a simplicial set X has at most n-dimensional non-degenerate
simplices, and Y has at most m-dimensional non-degenerate simplices, then their product
X × Y has at most (n + m)-dimensional non-degenerate simplices.
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Exercise 12 Show that for every simplicial set X, there is a canonical bijection π�
0 (X) ∼=

π0(|X|).

Exercise 13 Show that there are inclusions In ⊆ �n
j provided 0 < j < n or n ≥ 3, and

�n
j ⊆ ∂�n ⊆ �n for all n ≥ 0.

Exercise 14 Let I be a category with an initial object i and let J be a category with a
terminal object t . Show that a limit of a functor F : I → C is given by F(i) (together with
the canonical maps F(i) → F(x) for all x ∈ I ). Similarly, show that a colimit of a functor
G : J → C is given by G(t) (together with its maps G(x) → G(t) for all x ∈ J ).

Exercise 15 Show that for every n ≥ 0, there is a pushout

Jn

n skn−1(X)

Jn

n skn(X)

where Jn is the set of non-degenerate n-simplices. Furthermore, show that X ∼=
colimn skn(X).

Exercise 16 Show that the following simplicial sets are not nerves of categories:

(1) ∂�n for n ≥ 2
(2) �n

j for n ≥ 2 and 0 ≤ j ≤ n

(3) In for n ≥ 2

Exercise 17 Suppose that X is a Kan complex. Show that for all n ≥ 0, the simplicial set
coskn(X) is again a Kan complex. Prove that the canonical map X → coskn(X) induces a
bijection

π�
k (X) → π�

k (coskn(X))

for k < n and that π�
k (coskn(X)) = 0 for k ≥ n.

Exercise 18 Show that a natural transformation between two functors f, g : C → D induces
a homotopy between N(f ),N(g) : N(C) → N(D). Use this result to show that conjugation
with an element determines a self map of BG which is homotopic to the identity. What does
conjugation induce on π1(BG)? Why does this not show that every group is abelian?

Exercise 19 Show that the nerve of a category C is 2-coskeletal, i.e., that the canonical map
N(C) → cosk2(N(C)) is an isomorphism of simplicial sets.
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Exercise 20 Let X be a simplicial set and let n ≤ m. Show that skn(skm(X)) = skn(X) =
skm(skn(X)). Deduce that coskn(coskm(X)) ∼= coskm(coskn(X)). Is it also true that
skn(coskm(X)) ∼= coskm(skn(X))? (If not: Provide a counter example.) Is there a preferred
map between these two simplicial sets?

Exercise 21 Let C be a category and X a simplicial set. Recall that Xop is the following
simplicial set: Xop

n = Xn and d
op
i : Xn → Xn−1 is given by dn−i , and likewise s

op
i = sn−i as

a map Xn → Xn+1. Prove the following assertions:

(1) N(Cop) ∼= N(C)op

(2) (�n)op ∼= �n

(3) (�n
i )

op ∼= �n
n−i

(4) (∂�n)op ∼= ∂�n

Exercise 22 Let G be a group and let BG be the category with one object and G as
endomorphisms of that object. Show that N(B(G)) has only one non-trivial homotopy group,
namely π�

1 (N(BG)), and that this group is canonically isomorphic to G.

Exercise 23 Let X be a composer and let f : x → y be a morphism in X. Show that f is a
composition of idx with f and of f with idy .

Exercise 24 Consider the map [0] → [n] in � with image {0}. Show that this determines
a map 0 : �0 → ∂�n. Calculate the simplicial homotopy sets π�

i (∂�n, 0) for i ≥ 1 and
n ≥ 2. Deduce that ∂�n is not a Kan complex.

Exercise 25 Show that the following simplicial sets are not ∞-categories:

(1) ∂�n for n ≥ 2
(2) �n

j for n ≥ 3 and 0 ≤ j ≤ n

(3) In for n ≥ 2

Exercise 26 Determine the homotopy category of the following simplicial sets:

(1) ∂�n for n ≥ 1
(2) �n

j for n ≥ 2 and 0 ≤ j ≤ n

(3) In for n ≥ 0

Exercise 27 Let f : X → Y be a map of simplicial sets. Prove or give a counter example to
the following statements:

(1) If f is a monomorphism, then hX → hY is fully faithful.
(2) If f is a degree-wise surjection, then hX → hY is surjective and full, i.e., it induces a

surjection on objects and on hom-sets.
(3) If f induces a surjection on 0- and 1-simplices, then hX → hY is surjective and full.

Exercise 28 Prove or disprove the following statement: For any two simplicial sets X and
Y , the canonical map h(X × Y) → hX × hY is an isomorphism of categories.
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Exercise 29 A category C is called connected if π�
0 (N(C)) consists of only one element.

Show that a groupoid G is connected if and only if for every two objects x, y ∈ G, the set
HomG(x, y) is non-empty. Show that a connected groupoid is equivalent to BG for a group
G. Show, however, that the category of connected groupoids is not equivalent to the category
of groups.

Exercise 30 Let X be a topological space. Describe the category h(S(X)). Show that the
endomorphisms of each object form a group. Which group is it?

Exercise 31 Suppose that X is a composer with the inner 3-horn extension property. Let
σ : �1 × �1 → X be a map such that

(1) σ|�1×{0} = f ,
(2) σ|�1×{1} = g,
(3) σ|{0}×�1 = idx , and
(4) σ|{1}×�1 = idy ,

for morphisms f, g : x → y. Show that f ∼ g in the sense of Definition 1.2.3.

Exercise 32 Let X be a composer with the extension property for inner 3-horns. Show
that for any two composable morphisms f : x → y and g : y → z, the simplicial set
CompX(f, g) is connected, i.e., that π�

0 (CompX(f, g)) consists of only one element.

Exercise 33 Let X be a simplicial set and consider the canonical map X → N(hX).

(1) Show that this map factors through the canonical map X → cosk2(X).
(2) Show that the induced map cosk2(X) → N(hX) is an isomorphism if X is isomorphic

to the nerve of a category.
(3) Show that the map cosk2(X) → N(hX) is in general not an isomorphism. Hint: Find an

X which is 2-coskeletal, but not the nerve of a category.
(4) Prove or disprove the following statement: The map cosk2(X) → N(hX) is an

isomorphism if and only if X is isomorphic to the nerve of a category.

Exercise 34 Let (V,⊗,1) be a monoidal category. Then the functor HomV (1,−) : V →
Set is lax monoidal. Is it monoidal? If not: Can you find a condition on (V,⊗,1) which
ensures that it is?

Exercise 35 Let C be a category with finite products and finite coproducts. We say that C is
pointed if the canonical map ∅ → ∗ from the initial to the terminal object is an isomorphism.
Show that the identity canonically refines to a lax monoidal functor (C,×, ∗) → (C,�,∅).
When is this functor monoidal? Furthermore, show that any functor F : C → D refines
canonically to a lax symmetric monoidal functor (C,�,∅) → (D,�,∅). When is it
monoidal?
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Exercise 36 The goal of this exercise is to show that any essentially surjective and fully
faithful functor F : C → D between ordinary categories is an equivalence.

(1) Show that F admits an adjoint G. Hint: Use Exercise 10.
(2) Show that G is itself fully faithful.
(3) Show that an adjoint pair (F,G) of fully faithful functors makes F an equivalence with

G an inverse.

Exercise 37 Let F : C → D be a functor with the right adjoint G : D → C. Show that they
are mutually inverse if F is fully faithful and G is conservative. Here, conservativity means
that if f : x → y is a morphism inD andG(f ) is an isomorphism, then f is an isomorphism.

Exercise 38 Let F : C → D be left-adjoint to G : D → C. Show that if G is lax monoidal,
then F canonically refines to an oplax monoidal functor. Vice versa, show that if F is oplax
monoidal, then G canonically refines to a lax monoidal functor.

Exercise 39 Show that the left adjoint of a monoidal adjunction is in fact monoidal. Recall
that a monoidal adjunction consists of lax monoidal functors F and G, which are witnessed
to be adjoint by a unit η and a counit ε where both η and ε are monoidal transformations.

Exercise 40 Suppose that F is left-adjoint to G, witnessed by a unit and counit (η, ε). Show
that if F is monoidal, then the induced lax monoidal structure on G of Exercise 38 makes
(F,G, η, ε) a monoidal adjunction.

Exercise 41 Show that the coherent nerve functor N : Cat� → sSet commutes with
coproducts. Show that C is not right-adjoint to N. Does N have a right adjoint at all? Hint:
Does the ordinary nerve functor N : Cat → sSet have a right adjoint? And how are these two
questions related?

Exercise 42 Show that if the coherent nerve N(C) of a simplicial category is isomorphic
to the nerve of an ordinary category, then the underlying category uC is isomorphic to
the homotopy category π(C). Make explicit the coherent nerve of the following simplicial
category B

simp(G): There is only one object, and the simplicial set of endomorphisms of
this object is given by N(G), where G is a group (of a monoid, if you wish). Deduce from
the explicit analysis that N(Bsimp(G)) is not isomorphic to the nerve of a category although
uN(Bsimp(G)) ∼= π(N(Bsimp(G))).

Exercise 43 Prove or disprove the following statements:

(1) There exists a simplicial category C whose coherent nerve N(C) is not an ∞-category.
(2) There exists a simplicial category C whose coherent nerve N(C) is an ∞-category, but

not a Kan complex.

Exercise 44 Suppose that C is a simplicial category whose hom-simplicial sets are all Kan
complexes. Work out what it means concretely that a morphism f : x → y in a simplicial
category is an equivalence. Rephrase the condition of weakly fully faithful functors with the
help of this result.
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Exercise 45 Show that there exist monomorphisms X → Y where both X and Y are ∞-
categories, but X is not a sub-∞-category in the sense of Definition 1.2.76.

Exercise 46 Let Y → X be an inclusion of topological spaces. When is the induced map
S(Y ) → S(X) a subcategory? When is it a full subcategory?

Exercise 47 Let C0 ⊆ C be a full sub-∞-category and let D be an ∞-category. Show that
the functor category Fun(D,C0) is the full sub-∞-category of Fun(D,C) on those functors
f : D → C which factor through the inclusion C0 ⊆ C.

Exercise 48 Show that a simplicial set X is an ∞-category if and only if Xop is an ∞-
category, and likewise that X is a Kan complex if and only if Xop is a Kan complex. Show
that if X is an ∞-category then X is an ∞-groupoid if and only if Xop is an ∞-groupoid.

Exercise 49 Let C be a simplicial category. Show that the coherent nerve N(C) is isomorphic
to the nerve of an ordinary category if and only if C is in the image of the functor c : Cat →
Cat�.

Exercise 50 Show that the composite

Cat�
N→ sSet

h→ Cat

is isomorphic to the functor π : Cat� → Cat.

Exercise 51 Show the following assertions:

(1) Let C be an ordinary category and X a simplicial set. Then X is an ∞-category if and
only if every map X → N(C) is an inner fibration.

(2) A map f : X → Y is an inner fibration if and only if f op : Xop → Y op is an inner
fibration.

(3) A map f : X → Y is a left fibration if and only if the map f op : Xop → Y op is a right
fibration.

Exercise 52 Let S ⊆ S′ be sets of morphisms. Show that, in the notation of Definition 1.3.3,

(1) χR(S′) ⊆ χR(S),
(2) S ⊆ χ(S), and
(3) χR(S) = χR(χ(S)).

Exercise 53 A category I is called filtered if every functor K → I from a finite category K

extends over the inclusion K → K�. Show that a poset (viewed as a category) is filtered if
and only if

(1) for every finite collection of objects X1, . . . , Xn of I , there exists an object X of I

equipped with maps Xk → X for all k = 1, . . . , n;
(2) any two morphisms f, g : X → Y can be equalized, i.e., there exists a morphism h : Y →

Z such that hf = hg.
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Exercise 54 Let I be a finite category.

(1) Show that I is filtered if it has a terminal object.
(2) Show that there are examples where I is filtered but does not have a terminal object.
(3) Show that I is a poset and filtered if and only if it has a terminal object.

In particular, notice that this shows that there are many filtered categories which are not
posets.

Exercise 55 Show that every simplicial set A with only finitely many non-degenerate
simplices is compact, i.e., the canonical map

colim
i∈I

HomsSet(A,Xi) → HomsSet(A, colim
i∈I

Xi)

is an isomorphism, provided I is a filtered category.

Exercise 56 We call a set S semi-saturated if it is closed under pushouts, retracts and
countable compositions. Show that a semi-saturated set

(1) contains isomorphisms and is closed under finite coproducts, if it contains the identity of
an initial object ∅;

(2) is closed under composition, i.e., if f : A → B and g : B → C are elements of S, then
so is gf : A → C;

(3) is closed under countable coproducts if it is closed under finite coproducts, i.e., if
{fi : Ai → Bi}i∈I is a countable family of elements of S, then the map

∐

i∈I

: Ai → Bi is

an element of S as well.

Exercise 57 Show that a saturated set S in a category C contains all isomorphisms. Find an
example of a category C and a semi-saturated set S of morphisms in C which is non-empty
and does not contain all isomorphisms.

Exercise 58 Show the following assertions:

(1) The map ∅ → {∗} in Set generates the set of injections. What is χR(∅ → ∗)? Spell out
the factorization obtained by the small object argument for a general map f : M → N

of sets.
(2) The map {∗, ∗} → {∗} generates the class of surjections. What is χR({∗, ∗} → ∗)? Spell

out the factorization obtained by the small object argument for a general map f : M →
N of sets.

Exercise 59 Consider the set S = {∂�n → �n}n≥0 given by the boundary inclusions. Show
that χ(S) is given by all monomorphisms of simplicial sets.
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Exercise 60 Show that J is not a compact simplicial set, i.e., that there are infinitely many
non-degenerate simplices in J .

Exercise 61 Show that if a morphism f : �1 → C in an ∞-category extends over the
inclusion �1 → J , then f is an equivalence.

Exercise 62 Fill in the missing steps of Lemma 1.3.35. More precisely, show the following
assertions:

(1) The horn inclusion �n
j → �n for 0 ≤ j < n is a retract of the pushout product map

�n × {0} ��n
j ×{0} �n

j × �1 → �n × �1.

(2) The pushout product map

∂�n × �1 ∪ �n × {0} → �n × �1

is left-anodyne.

Exercise 63 Show that a trivial fibration f : X → Y between Kan complexes induces
an isomorphism in the category π(Kan). Hint: Show that a trivial fibration between Kan
complexes is a homotopy equivalence.

Exercise 64 Show that if f : y → z is an equivalence, then

mapC(x, y) � mapC(x, y) × �0 f→ mapC(x, y) × mapC(y, z) → mapC(x, z)

is a homotopy equivalence.

Exercise 65 Show that that composition as defined right before Definition 1.3.47 is associa-
tive up to homotopy, i.e., that composition in an ∞-category determines a category enriched
in h(Kan), the homotopy category of Kan complexes. Hint: Consider the diagram

{0,1} ∪ {1,2} ∪ {2,3} {0,1,2} ∪ {2,3} {0,2} ∪ {2,3}

{0,1} ∪ {1,2,3} 3 {0,2,3}

{0,1} {1,3} {0,1,3} {0,3}

and show that all maps labelled with a � are inner-anodyne.
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Exercise 66 Let f : C → D be a functor between ∞-categories. Let a : x → x′ and b : y →
y′ be morphisms in C. Show that there is a homotopy commutative diagram of Kan complexes

induced by precomposition with a, respectively f a, and post-composition with b, respec-
tively f b.

Deduce that there is a canonical functor F from Cat1∞ (the 1-category of ∞-categories) to
Catπ(Kan), the category of categories enriched in the homotopy category of Kan complexes,
where F(C) has the same objects as C and the hom-object from x to y is given by the image
of mapC(x, y) in π(Kan).

Exercise 67 Show that [n] � [m] = [n + m + 1]. Furthermore, show that C � [0] = C� and
[0] � C = C�.

Exercise 68 Show that for categories C and D we have N(C) � N(D) ∼= N(C � D). In
particular, show that there is a canonical isomorphism �i � �j ∼= �i+1+j .

Exercise 69 The functors X �− and −�X as functors sSet → sSet preserve pushouts. Find
an example of a colimit that is not preserved by X � −.

Exercise 70 Show that the slice/join adjunction induces a bijection of lifting problems
between diagrams of the kind

S Xϕ/

T Xϕi/ ×Yf ϕi/ Yf ϕ/

and diagrams of the kind

ϕ
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Exercise 71 Show that

�n
j � �m ∪ �n � ∂�m = �n+1+m

j

and

∂�m � �n ∪ �m � �n
j = �n+1+m

m+1+j .

In order to do so, determine explicitly the following sub-simplicial sets of �n+1+m:

(1) ∂�n � �m

(2) �n
j � �m

(3) �m � ∂�n

(4) �m � �n
j

Exercise 72 For an object x in an ∞-category C, show that the canonical map Cx/ → C is a
left fibration and that C/x → C is a right fibration.

Exercise 73 Show that for an object x of a general simplicial set X, the canonical map
Xx/ → X is generally not a left fibration.

Exercise 74 Show that an inner fibration f : X → Y is inner-anodyne if and only if it is an
isomorphism.

Exercise 75 Show that �0 → J is not inner-anodyne.

Exercise 76 Show that the intersection of left- and right-anodyne maps strictly contains the
inner-anodyne maps.

Exercise 77 Show that a functor F : C → D between ∞-categories is conservative if and
only if the induced functor hF : hC → hD between the homotopy categories is conservative.
Furthermore, show that the canonical functor C → N(hC) is conservative.

Exercise 78 Show that a functor p : C → D is conservative if and only if the following
diagram is a pullback:

Exercise 79 Show that an inner fibration C → D between ∞-categories is an isofibration if
and only if the induced functor N(hC) → N(hD) is an isofibration.
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Exercise 80 Show that a functor C → D between ∞-categories is an isofibration if and
only if Cop → Dop is an isofibration.

Exercise 81 Let C0 ⊆ C be a full subcategory. Show that the inclusion C0 → C is an
isofibration if C0 is closed under equivalences in C, i.e., that if x ∈ C0 and y ∈ C is equivalent
to x, then y is also in C0.

Exercise 82 Show that if f : x → y is an equivalence, then the maps C/x → C/y and
Cy/ → Cx/ are Joyal equivalences.

Exercise 83 Show that there exists a functor f : C → D between ∞-categories which is
conservative, but does not satisfy the RLP with respect to �1 → J . Hint: Consider the map
J → S(|J |).

Exercise 84 Show that a left fibration p : C → D is a Kan fibration, provided that D is an
∞-groupoid.

Exercise 85 Let p : C → D be an isofibration. Show that the set of all monomorphisms
K → L such that the induced map

CL → CK ×DK DL

is again an isofibration is a saturated set.

Exercise 86 Show that the class of essentially surjective and fully faithful functors satisfies
the 3-for-2 property.

Exercise 87 Suppose that f : C → D is a Joyal equivalence. Then show that the restricted
map C� → D� is also a Joyal equivalence.

Exercise 88 Show that two functors f, g : C → D are naturally equivalent if and only if f

and g represent the same element of π0(Fun(C,D)�).

Exercise 89 Show that a Joyal equivalence f : C → D induces an equivalence of ordinary
categories hC → hD.

Exercise 90 Show that a functor f : C → D between ∞-categories is a Joyal equivalence
if and only if for every simplicial set K , the induced map

f∗ : Fun(K,C) → Fun(K,D)

is a Joyal equivalence.

Exercise 91 Let F : C → D be a functor between ordinary categories. Show that the
induced map on nerves is inner-anodyne if and only if F is an isomorphism.
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Exercise 92 Let C be an ∞-category and S a set of morphisms of C. Then S is called
saturated if it coincides with the set S̄ of all morphisms that are sent to equivalences under
the functor C → C[S−1]. Show that:

(1) If S ⊆ T and T is saturated, then S̄ ⊆ T as well.
(2) Two sets of morphisms S and T of C give rise to Joyal-equivalent localizations

(compatible with the map from C) if and only if S̄ = T̄ .

Exercise 93 Prove or disprove the following statements:

(1) For every ∞-category C, a set S of morphisms of C and a set T of morphisms of C[S−1],
the functor C → C[S−1][T −1] is a localization of C.

(2) For every ∞-category C, a set S of morphisms of C and a set T of morphisms of C,
the functor C → C[S−1][T −1] is a localization of C. Here, we view morphisms of C as
morphisms of C[S−1] via the canonical functor C → C[S−1].

Exercise 94 Let C be an ordinary category and S a set of morphisms. Show that C →
hC[S−1] is the initial functor C → D (up to natural isomorphism) between ordinary
categories sending S to isomorphisms.

Exercise 95 Let C be an ordinary category and S a set of morphisms. Show that every
morphism in hC[S−1] can be represented by a zig zag of morphisms in C, such that the
maps pointing in the wrong direction are contained in S.

Exercise 96 Let C be an ordinary category. Consider a pushout of categories

where Mor(C) denotes the set of all morphisms of C. Show that D is a groupoid.

Exercise 97 In this exercise, you may use the fact that the unit map K → S(|K|) is a
homotopy equivalence for any Kan complex K . Recall that a map of simplicial sets is a weak
equivalence if its geometric realization is a homotopy equivalence, and let X be a simplicial
set. Prove or disprove the following statements:

(1) The unit map X → S(|X|) is a monomorphism.
(2) The unit map X → S(|X|) is a weak equivalence.
(3) The unit map X → S(|X|) is anodyne.

Exercise 98 Let C be an ∞-category and let C → S(|C|) be the unit map of the adjunction
(S, | − |). Show that this is a localization of C along all morphisms.
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Exercise 99 Show that the factorization C → P(f ) → D for a functor f : C → D between
∞-categories is functorial, i.e., that for every solid commutative diagram

a dashed arrow exists which makes both small squares commute.

Exercise 100 Consider a pushout diagram of simplicial sets

X Y

X Y

in which X → X′ is a monomorphism and X → Y is a Joyal equivalence. Show that the
map X′ → Y ′ is also a Joyal equivalence.

Exercise 101 Let X → X′ and Y → Y ′ be Joyal equivalences between simplicial sets.
Show that both maps X � Y → X′ � Y ′ and X × Y → X′ × Y ′ are Joyal equivalences.

Exercise 102 Show that:

(1) A retract of a Joyal equivalence is a Joyal equivalence.
(2) The set of monomorphisms which are also Joyal equivalences is saturated.

Prove or disprove that the set of Joyal equivalences is saturated.

Exercise 103 Recall that a map f : X → Y is said to admit a pre-inverse if there exist maps
g : Y → X, τ : �1 → Hom(X,X) and τ ′ : �1 → Hom(Y, Y ) such that

(1) τε = idX and τ1+ε = gf , where ε ∈ {0, 1} ∼= Z/2,
(2) τ ′

ε = idY and τ ′
1+ε = fg, where again ε ∈ {0, 1} ∼= Z/2,

(3) for all objects x of X, the morphism τ(x) : �1 → X represents a degenerate edge of X,
and for all objects y of Y , τ ′(y) : �1 → Y represents a degenerate edge of Y .

Show that a map f : X → Y which admits a pre-inverse is a Joyal equivalence.

Exercise 104 Let p : C → D be an inner fibration between ∞-categories which induces a
surjection on 0-simplices and is a Joyal equivalence. Show that p is a trivial fibration.

Exercise 105 Show that for any two simplicial sets, X � Y is a retract of X � Y .
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Exercise 106 Show that the canonical map

|Hom(A,B)| −→ map(|A|, |B|)

is a homotopy equivalence. You may use the fact that both the unit map A → S(|A|) and the
counit map |S(X)| → X are weak equivalences.

The goal of the following exercises is to (almost) give a proof of the fact that
anodyne maps are precisely those monomorphisms which are weak equivalences.
More precisely, we will show that it is implied by the following statement: Let
p : X → Y be a Kan fibration. Then there exists a factorization of p as

X
α−→ Z

β−→ Y

where β is a trivial fibration (i.e., it has the RLP with respect to monomorphisms)
and α is a minimal fibration. In this context, we need to know the following facts
about minimal fibrations:

• A minimal fibration is a Kan fibration.
• A minimal fibration α : X → Z is locally trivial, i.e., for every simplex�n → Z,

the pulled-back fibration is isomorphic (over �n) to a projection�n ×B → �n.

Exercise 107 Show that a Kan fibration p : X → Y is a trivial fibration if and only if its
fibres are contractible. Hint: For the interesting direction, consider a lifting problem

n X

n Y

a

b

For future reference, we let y = b(n). Consider the map g : �n × �1 → �n determined by
g(k, 0) = k and g(k, 1) = n. Show that the map ∂�n × {0} → ∂�n × �1 is anodyne, and
use g to obtain a map

�1 → X∂�n ×Y ∂�n Y�n

sending 0 to the original square and 1 to the square

n X

n 0 Y
y
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where the map �0 → Y is the object y. Show that this lifting problem can be solved. Finally,
show that this implies that the original lifting problem can be solved as well.

Exercise 108 In this exercise, we will use minimal fibrations to show that the geometric
realization of a Kan fibration p : X → Y is a Serre fibration, i.e., it has the RLP with respect
to the inclusions Dn × {0} → Dn × D1. Here, Dn is the n-dimensional topological cube.

(1) Show that the geometric realization of a minimal fibration is a Serre fibration whose fibre
is given by the geometric realization of the fibre of the Kan fibration.

(2) Show that the geometric realization of a trivial fibration is a Serre fibration.

Hints: For (1), show that the realization of a locally trivial map is also locally trivial. Then
show that a locally trivial map of spaces is a Serre fibration. For (2), show that there exists
a monomorphism X → W with W a contractible Kan complex. Consider the maps X →
W × Y → Y . Show that the latter is a trivial fibration and deduce that p is a retract of
W × Y → Y .

Exercise 109 Show that a Kan fibration p : X → Y which is additionally a weak
equivalence has contractible fibres.

Exercise 110 Show that a monomorphism i : A → B is a weak equivalence if and only if it
is anodyne.

Exercise 111 Show that a cocartesian fibration p : X → Y whose fibres are Joyal-equivalent
to �0 is a trivial fibration.

Exercise 112 Let P be a poset and C an ∞-category. Suppose that you are given a function
f : P → ob(C) with the following property: Whenever x ≤ y are elements of P , then the
spaces of maps mapC(f x, fy) are contractible.

(1) Show that there exists a functor F : P → C extending the given function f on objects.
(2) Show that any two such extensions are equivalent.

Of course, the “correct” version of (2) is the following: Show that there is a contractible space
parametrizing all possible choices of such extensions, i.e., that in the pullback diagram

the simplicial set Ext(f ) is a contractible Kan complex. Can one replace P by an arbitrary
1-category and obtain the same results?

Exercise 113 Let C be an ∞-category and consider for each i ≥ 0 a morphism xi → xi+1

between objects in C. Show that these maps assemble into a functor N → C.
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Exercise 114 Prove or disprove that an isofibration p : C → D between ∞-categories is a
trivial fibration if and only if its fibres are Joyal-equivalent to �0.

Exercise 115 Let C be an ∞-category and consider the inner fibration p : C → �0. Show
that a morphism f in C is p-(co)cartesian if and only if f is an equivalence.

Exercise 116 Show that if a morphism between two squares of ∞-categories is given in
which each comparison map is a Joyal equivalence, then the one square is homotopy-
cartesian if and only if the other square is.

Exercise 117 Suppose that you are given a pullback diagram

X X

Y Y

p p

in which the map p is a (co)cartesian fibration. Show that the map p′ is a (co)cartesian
fibration as well.

Exercise 118 Let p : X → S be an inner fibration of simplicial sets and f : x → y an edge
in X. Suppose that f is p′-cocartesian, where p′ is given by the following pullback:

X X

S S

p p

Show that f is locally cocartesian.

Exercise 119 Prove Lemma 3.2.7

Exercise 120 Consider the simplicial set S = �2/�{0,1} and the canonical map
p : �{0,2} → S. Show that the diagram

2
0

{0,2}

2 S

f

c

is a pullback, where c is the canonical projection. Then proceed to show:

(1) p is an inner fibration.
(2) The edge f|�{0,1} is degenerate, but not p-cocartesian.
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Exercise 121 Show that the functors (−)�, (−)� : sSet → sSet+ and the functors
u,m : sSet+ → sSet are involved in various adjunctions. Here, u is the forgetful functor and
m is the functor which sends a marked simplicial set (X, S) to the smallest sub-simplicial set
X0 ⊆ X containing S.

Exercise 122 Let p : E → C be a cocartesian fibration and K a marked simplicial set
equipped with a map f : K → C�. Consider the sub-∞-category of Funmcc

f (K,E) on those

1-simplices whose corresponding map K × �1 → E is a map of marked simplicial sets
K×(�1)� → E�, i.e., we consider only those transformations of functors whose components
are pointwise p-cocartesian. Show that this sub-∞-category is given by Funmcc

f (K,E)�.

Exercise 123 Show that if K = �0 and f : �0 → C picks out an object z of C, then
Funcc(K,E) ∼= E and Funccf (K,E) ∼= Ez.

Exercise 124 Let X → Y be a cocartesian fibration and f : K → Y � a map of marked
simplicial sets. Show that Map�

f (K,X�) is an ∞-category and that Map�
f (K,X�) is the

largest sub-∞-groupoid inside Map�
f (K,X�).

Exercise 125 Show that the functor (−)� : sSet → sSet+ sends Joyal equivalences to
marked equivalences.

Exercise 126 Show that the category of marked simplicial sets is canonically enriched in
simplicial sets.

Exercise 127 Show that the functor LF : sSet → sSet of Theorem 3.3.8 preserves colimits
and monomorphisms.

Exercise 128 Show that the initial vertex maps assemble to a natural transformation LF ⇒
id.

Exercise 129 Suppose to be given a commutative diagram

A0 A1 A2 . . .

B0 B1 B2 . . .

f0 f1 f2

in which the maps fi are Joyal equivalences and all horizontal maps are monomorphisms.
Show that the induced map f : A = colimAi → colimBi = B is a Joyal equivalence.

Exercise 130 Show that for an ∞-groupoid X, there is a canonical Joyal equivalence
Xop � X.
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Exercise 131 Show that the functor N(�
op
/C) → C is full in the sense that every morphism

of C is the image of a morphism under this functor. Use this result to show that the
composition C → Cat∞ induces on objects and morphisms the constructions we have done
earlier.

Exercise 132 Suppose that you are given a cocartesian fibration p : E → C. Recall that we
have constructed for every edge f : �1 → C a functor Ex × �1 → E, whose restriction to
Ex×{1} is given by f!. Show that this functor may equivalently be constructed by considering
the diagram

and show the existence of a dashed arrow having all the above properties.

Exercise 133 Given a cocartesian fibration E → C × �1, construct a functor E0 → E1

which commutes with the projections to C. Here, Ei is the pulled-back cocartesian
fibration along the inclusion C × {i} → C × �1. Show that this functor is a morphism
of cocartesian fibrations. Likewise, construct for a cocartesian fibration E → C × �2 a
2-simplex in the ∞-category (Cat∞)/C. If you are eager, do this for a general n instead
of 2.

Exercise 134 Let p : C → D be an inner fibration between ∞-categories. Suppose that for
every map f : �1 → D, the induced map �1 ×D C → �1 is a Joyal equivalence. Show that
p is a Joyal equivalence.

Exercise 135 Let C be an ∞-category and x and object of C. Show that the object
represented by �0 → C/x which is adjoint to the map �0 � �0 → C given by idx is a
terminal object.

Exercise 136 Let C be an ∞-category and x an initial object of C. Show that if y is
equivalent to x, then y is also initial in C.

Exercise 137 Suppose that Cterm is not empty. Show that any terminal object of Fun(K,C)

takes values in Cterm.

Exercise 138 Show that there exists C and K such that Fun(K,C) has a terminal object but
C does not.

Exercise 139 Show that there exists a simplicial set X such that map Tw(X) → X × Xop

of Definition 4.2.3 is not a right fibration.
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Exercise 140 Prove or disprove that the diagram

is homotopy-cartesian if and only if f is fully faithful.

Exercise 141 Let p : K → C be a diagram. Suppose that there is a colimit cone p̃ of p with
colimit x in C. Let y be an object of C which is equivalent to x. Show that y is also the colimit
of a colimit cone of p.

Exercise 142 Let p : K → C be a diagram and let q : I → Cp/ be a further diagram. Let
q̄ : I � K → C be the associated map. Show that there is an isomorphism (Cp/)q/

∼= Cq̄/.
Likewise, show that there is an isomorphism (C/p)q/

∼= (Cq′/)/p′ where q′ is the restriction
of q : I � K → C to I and p′ is adjoint to q̄.

Exercise 143 Let K be the coequalizer of two monomorphisms f, g : A → B and let
F : K → C be a functor. Suppose that the restrictions of F to B and A admit colimits
and that C admits coequalizers. Show that F admits a colimit in this case.

Exercise 144 Let F : C → D be a functor between ∞-categories. Show that F preserves
small colimits if and only if it preserves small coproducts and pushouts (or coequalizers).

Exercise 145 Show that a map f : K → L is cofinal if and only if f op : Kop → Lop is
coinitial.

Exercise 146 Show that left-anodyne maps do not satisfy the left cancellation property
among monomorphisms.

Exercise 147 Let f : C → D and g : D → C be functors. Suppose that ε : fg → id is a
natural transformation. Show that the map

map(x, g(y)) → map(f (x), f (g(y))) → map(f (x), y)

is natural in x.

Exercise 148 Show that the set of right-anodyne maps i : A → B whose pullback along
any left fibration is again right-anodyne is a saturated set and satisfies the right-cancellation
property.
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Exercise 149 A right deformation retract is a monomorphism i : A → B such that there
exists a retraction p : B → A and a simplicial homotopy H : �1×B → B withH(0) = idB ,
H(1) = ip and whose restriction to �1 × A is constant at the identity of A.

(1) Show that for every simplicial set, the map {1} × K → �1 × K is a right deformation
retract.

(2) Show that a right deformation retract is a right-anodyne map.
(3) Show that the pullback of a right deformation retract along a left fibration is again a right

deformation retract.

Exercise 150 Give an example of a proper (or smooth) map which is not universally proper
(or smooth).

Exercise 151 Let C be a cocomplete ∞-category and let F : �n → C be a functor. Calculate
the colimit of the restriction ∂�n → �n → C.

Exercise 152 Let p : E → D be a cartesian fibration. Show that the canonical map Ed →
Ed/ admits a right adjoint. Deduce that for a cartesian fibration, the canonical map Ed → Ed/

is a weak equivalence.

Exercise 153 Show that a fully faithful and essentially surjective functor is invertible.

Exercise 154 Let F : K → Cat∞ be a functor and p : E → K the associated cocartesian
fibration. Show that the colimit of F is given by E[cc−1], where the set cc is the set of
p-cocartesian edges. Likewise, show that the limit FunccK(K,E) is given by the category of
cocartesian sections of p. Deduce the analogs for functors with values in Spc.

Exercise 155 Consider, for a diagram F : K → C and an object x of C, the functor

mapC(F(−), x) : K → Spcop.

Show that its limit is given by MapC(F, x). Deduce that for a functor f : C → D with the
right adjoint g, there exists a canonical equivalence MapD(f F, z) � MapC(F, gz).

Exercise 156 Let f : C → D and f ′ : D → E be composable functors which admit right
adjoints g and g′, respectively. Show that in this case gg′ is a right adjoint of f ′f .

Exercise 157 Show that, for each object x of an ∞-category C, the functor mapC(x,−) : C
→ Spc preserves limits.
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